Biliverdin therapy protects rat livers from ischemia and reperfusion injury

Authors

  • Constantino Fondevila,

    1. Dumont-UCLA Transplant Center, Division of Liver and Pancreas Transplantation, Department of Surgery, David Geffen School of Medicine at UCLA, Los Angeles, CA
    Search for more papers by this author
  • Xiu-Da Shen,

    1. Dumont-UCLA Transplant Center, Division of Liver and Pancreas Transplantation, Department of Surgery, David Geffen School of Medicine at UCLA, Los Angeles, CA
    Search for more papers by this author
  • Seiichiro Tsuchiyashi,

    1. Dumont-UCLA Transplant Center, Division of Liver and Pancreas Transplantation, Department of Surgery, David Geffen School of Medicine at UCLA, Los Angeles, CA
    Search for more papers by this author
  • Kenichiro Yamashita,

    1. Immunobiology Research Center, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA
    Search for more papers by this author
  • Eva Csizmadia,

    1. Immunobiology Research Center, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA
    Search for more papers by this author
  • Charles Lassman,

    1. Department of Pathology and Laboratory Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA
    Search for more papers by this author
  • Ronald W. Busuttil,

    1. Dumont-UCLA Transplant Center, Division of Liver and Pancreas Transplantation, Department of Surgery, David Geffen School of Medicine at UCLA, Los Angeles, CA
    Search for more papers by this author
  • Jerzy W. Kupiec-Weglinski,

    Corresponding author
    1. Dumont-UCLA Transplant Center, Division of Liver and Pancreas Transplantation, Department of Surgery, David Geffen School of Medicine at UCLA, Los Angeles, CA
    2. Department of Pathology and Laboratory Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA
    • The Dumont-UCLA Transplant Center, 77-120 CHS, Box 957054, 10833 Le Conte Ave., Los Angeles, CA 90095-7054
    Search for more papers by this author
    • fax: 310-267-2358

    • J.W.K.-W. and F.H.B. contributed equally to this work.

  • Fritz H. Bach

    1. Immunobiology Research Center, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA
    Search for more papers by this author
    • J.W.K.-W. and F.H.B. contributed equally to this work.


Abstract

Heme oxygenase (HO-1) provides a cellular defense mechanism during oxidative stress and catalyzes the rate-limiting step in heme metabolism that produces biliverdin (BV). The role of BV and its potential use in preventing ischemia/reperfusion injury (IRI) had never been studied. This study was designed to explore putative cytoprotective functions of BV during hepatic IRI in rat liver models of ex vivo perfusion and orthotopic liver transplantation (OLT) after prolonged periods of cold ischemia. In an ex vivo hepatic IRI model, adjunctive BV improved portal venous blood flow, increased bile production, and decreased hepatocellular damage. These findings were correlated with amelioration of histological features of IRI, as assessed by Suzuki's criteria. Following cold ischemia and syngeneic OLT, BV therapy extended animal survival from 50% in untreated controls to 90% to 100%. This effect correlated with improved liver function and preserved hepatic architecture. Additionally, BV adjuvant after OLT decreased endothelial expression of cellular adhesion molecules (P-selectin and intracellular adhesion molecule 1), and decreased the extent of infiltration by neutrophils and inflammatory macrophages. BV also inhibited expression of inducible nitric oxide synthase and proinflammatory cytokines (interleukin 1β, tumor necrosis factor α, and interleukin 6) in OLTs. Finally, BV therapy promoted an increased expression of antiapoptotic molecules independently of HO-1 expression, consistent with BV being an important mediator through which HO-1 prevents cell death. In conclusion, this study documents and dissects potent cytoprotective effects of BV in well-established rat models of hepatic IRI. Our results provide the rationale for a novel therapeutic approach using BV to maximize the function and thus the availability of donor organs. (HEPATOLOGY 2004;40:1333–1341.)

Ancillary