SEARCH

SEARCH BY CITATION

References

  • 1
    Shimonishi T, Zen Y, Chen T-C, Chen M-F, Jan Y-Y, Yeh T-S, et al. Increasing expression of gastrointestinal phenotypes and p53 along with histological progression of intraductal papillary neoplasia of the liver. Hum Pathol 2002; 33: 503511.
  • 2
    Sirica AE. Bile duct cancer, ERBB-2, and COX-2. Sci Med 2002; 8: 268277.
  • 3
    Patel T. Increasing incidence and mortality of primary intrahepatic cholangiocarcinoma in the United States. HEPATOLOGY 2001; 33: 13531357.
  • 4
    Taylor-Robinson SD, Toledano MB, Arora S, Keegan TJ, Hargreaves S, Beck A, et al. Increase in mortality rates from intrahepatic cholangiocarcinoma in England and Wales 1968–1998. Gut 2001; 48: 816820.
  • 5
    Khan SA, Taylor-Robinson SD, Toledano MB, Beck A, Elliott P, Thomas HC. Changing international trends in mortality rates for liver, biliary and pancreatic tumours. J Hepatol 2002; 37: 806813.
  • 6
    Anderson CD, Pinson CW, Berlin J, Chari RS. Diagnosis and treatment of cholangiocarcinoma. Oncologist 2004; 9: 4357.
  • 7
    Gores GJ. Cholangiocarcinoma: current concepts and insights. HEPATOLOGY 2003; 37: 961969.
  • 8
    Ortner MEJ, Caca K, Berr F, Liebetruth J, Mansmann U, Huster D, et al. Successful photodynamic therapy for nonresectable cholangiocarcinoma: a randomized prospective study. Gastroenterology 2003; 125: 13551363.
  • 9
    Wiedmann M, Berr F, Schiefke I, Witzigmann H, Kohlhaw K, Mössner J, et al. Photodynamic therapy in patients with non-resectable hilar cholangiocarcinoma: 5-year follow-up of a prospective phase II study. Gastrointest Endosc 2004; 60: 6875.
  • 10
    Mezawa S, Homma H, Sato T, Doi T, Miyanishi K, Takada K, et al. A study for carboplatin coated tube for the unresectable cholangiocarcinoma. HEPATOLOGY 2000; 32: 916923.
  • 11
    Pascher A, Jonas S, Neuhaus P. Intrahepatic cholangiocarcinoma: indication for transplantation. J Hepatobiliary Pancreat Surg 2003; 10: 282287.
  • 12
    Sell S, Dunsford HA. Evidence for the stem cell origin of hepatocellular carcinoma and cholangiocarcinoma. Am J Pathol 1989; 134: 13471363.
  • 13
    Elmore LW, Sirica AE. “Intestinal-type” of adenocarcinoma preferentially induced in right/caudate liver lobes of rats treated with furan. Cancer Res 1993; 53: 254259.
  • 14
    Gil-Benso R, Martinez-Lorente A, Pellin-Perez A, Navarro-Fos S, Gregori-Romero MA, Carda C, et al. Characterization of a new rat cell line established from 2′ AAF-induced combined hepatocellular cholangiocellular carcinoma. In Vitro Cell Dev Biol Anim 2001; 37: 1725.
  • 15
    Bae JY, Park YN, Nakanuma Y, Lee WJ, Kim JY, Park C. Intestinal type cholangiocarcinoma of intrahepatic large bile duct associated with hepatolithiasis: a new histologic subtype for further investigation. Hepatogastroenterology 2002; 49: 628630.
  • 16
    Thiese ND, Yao JL, Harada K, Hytiroglou P, Portmann B, Thung SN, et al. Hepatic ‘stem cell’ malignancies in adults: four cases. Histopathology 2003; 43: 263271.
  • 17
    Holzinger F, Z'graggen K, Bϋchler MW. Mechanisms of biliary carcinogenesis: a pathogenetic multi-stage cascade towards cholangiocarcinoma. Ann Oncol 1999; 10: S122S126.
  • 18
    Haswell-Elkins MR, Satarug S, Tsuda M, Mairiang E, Esumi H, Sithithaworn P, et al. Liver fluke infection and cholangiocarcinoma: model of endogenous nitric oxide and extragastric nitrosation in human carcinogenesis. Mutation Res 1994; 305: 241252.
  • 19
    Spirlì C, Fabris L, Duner E, Fiorotto R, Ballardini G, Roskams T, et al. Cytokine-stimulated nitric oxide production inhibits adenylyl cyclase and cAMP-dependent secretion in cholangiocytes. Gastroenterology 2003; 124: 737753.
  • 20
    Jaiswal M, LaRusso NF, Burgart LJ, Gores GJ. Inflammatory cytokines induce DNA damage and inhibit DNA repair in cholangiocarcinoma cells by a nitric oxide-dependent mechanism. Cancer Res 2000; 60: 184190.
  • 21
    Jaiswal M, LaRusso NF, Shapiro RA, Billiar TR, Gores GJ. Nitric oxide-mediated inhibition of DNA repair potentiates oxidative DNA damage in cholangiocytes. Gastroenterology 2001; 120: 190199.
  • 22
    Torok NJ, Higuchi H, Bronk S, Gores GJ. Nitric oxide inhibits apoptosis downstream of cytochrome C release by nitrosylating caspase 9. Cancer Res 2002; 62: 16481653.
  • 23
    Wang J, Torbenson M, Wang Q, Ro JY, Becich M. Expression of inducible nitric oxide synthase in paired neoplastic and non-neoplastic primary prostate cell cultures and prostatectomy specimen. Urol Oncol 2003; 21: 117122.
  • 24
    Kiguchi K, Carbajal S, Chan K, Beltrán L, Ruffino L, Shen J, et al. Constitutive expression of ErbB-2 in gallbladder epithelium results in development of adenocarcinoma. Cancer Res 2001; 61: 69716976.
  • 25
    Zhang Z, Lai G-H, Sirica AE. Celecoxib-induced apoptosis in rat cholangiocarcinoma cells mediated by Akt inactivation and Bax translocation. HEPATOLOGY 2004; 39: 10281037.
  • 26
    Hayashi N, Yamamoto H, Hiraoka N, Dono K, Ito Y, Okami J, et al. Differential expression of cyclooxygenase-2 (COX-2) in human bile duct epithelial cells and bile duct neoplasm. HEPATOLOGY 2001; 34: 638650.
  • 27
    Endo K, Yoon B, Pairojkul C, Demetris AJ, Sirica AE. ERBB-2 overexpression and cyclooxygenase-2 up-regulation in human cholangiocarcinoma and risk conditions. HEPATOLOGY 2002; 36: 439450.
  • 28
    Wu T, Leng J, Han C, Demetris AJ. The cyclooxygenase-2 inhibitor celecoxib blocks phosphorylation of Akt and induces apoptosis in human cholangiocarcinoma cells. Mol Cancer Ther 2004; 3: 299307.
  • 29
    Han C, Leng J, Demetris AJ, Wu T. Cyclooxygenase-2 promotes human cholangiocarcinoma growth: evidence for cyclooxygenase-2-independent mechanism in celecoxib-mediated induction of p21waf1/cip1 and p27kip1 and cell cycle arrest. Cancer Res 2004; 64: 13691376.
  • 30
    Ishimura N, Bronk SF, Gores GJ. Inducible nitric oxide synthase upregulates cyclooxygenase-2 in mouse cholangiocytes promoting cell growth. Am J Physiol Gastrointest Liver Physiol 2004; 287: G88G95.
  • 31
    Yoon J-H, Canbay AE, Werneburg NW, Lee SP, Gores GJ. Oxysterols induce cyclooxygenase-2 expression in cholangiocytes: implications for biliary tract carcinogenesis. HEPATOLOGY 2004; 39: 732738.
  • 32
    Kinami Y, Ashida Y, Gotoda H, Seto K, Kojima Y, Takashima S. Promoting effects of bile acid load on the occurrence of cholangiocarcinoma induced by diisopropanolnitrosamine in hamsters. Oncology 1993; 50: 4651.
  • 33
    Yoon J-H, Higuchi H, Werneburg NW, Kaufmann SH, Gores GJ. Bile acids induce cyclooxygenase-2 expression via the epidermal growth factor receptor in a human cholangiocarcinoma cell line. Gastroenterology 2002; 122: 985993.
  • 34
    Werneburg NW, Yoon J-H, Higuchi H, Gores GJ. Bile acids activate EGF receptor via a TGF-α-dependent mechanism in human cholangiocyte cell lines. Am J Physiol Gastrointest Liver Physiol 2003; 285: G31G36.
  • 35
    Yoon JH, Werneburg NW, Higuchi H, Canbay AE, Kaufmann SH, Akgul C, et al. Bile acids inhibit Mcl-1 protein turnover via an epidermal growth factor receptor/Raf-1-dependent mechanism. Cancer Res 2002; 15: 65006505.
  • 36
    Pardi DS, Loftus JrEV, Kremers WK, Keach J, Lindor KD. Ursodeoxycholic acid as a chemopreventive agent in patients with ulcerative colitis and primary sclerosing cholangitis. Gastroenterology 2003; 124: 889893.
  • 37
    Rao CV, Indranie C, Simi B, Manning PT, Connor JR, Reddy BS. Chemopreventive properties of a selective inducible nitric oxide synthase inhibitor in colon carcinogenesis, administered alone or in combination with celecoxib, a selective cyclooxygenase-2 inhibitor. Cancer Res 2002; 62: 165170.
  • 38
    Chen T, Nines RG, Peschke SM, Kresty LA, Stoner GD. Chemopreventive effects of a selective nitric oxide synthase inhibitor on carcinogen-induced rat esophageal tumorigenesis. Cancer Res 2004; 64: 37143717.
  • 39
    Koehne C-H, Dubois RN. COX-2 inhibition and colorectal cancer. Semin Oncol 2004; 31(Suppl 7): 1221.
  • 40
    Grieco A, Miele L, Giorgi A, Civello IM, Gasbarrini G. Acute cholestatic hepatitis associated with celecoxib. Ann Pharmacother 2002; 36: 18871889.
  • 41
    Huster D, Schubert C, Berr F, Mössner J, Caca K. Rofecoxib-induced cholestatic hepatitis: treatment with molecular adsorbent recycling system (MARS). J Hepatol 2002; 37: 423414.
  • 42
    Sirica AE, Lai G-H, Zhang Z. Biliary cancer growth factor pathways, cyclo-oxygenase-2 and potential therapeutic strategies. J Gastroenterol Hepatol 2001; 16: 363372.
  • 43
    Rashid A. Cellular and molecular biology of biliary tract cancers. Surg Oncol Clin N Am 2002; 11: 9951009.
  • 44
    Okuda K, Nakanuma Y, Miyazaki M. Cholangiocarcinoma: recent progress. Part 2: molecular pathology and treatment. J Gastroenterol Hepatol 2002; 17: 10561063.
  • 45
    Nakanuma Y, Harada K, Ishikawa A, Zen Y, Sasaki M. Anatomic and molecular pathology of intrahepatic cholangiocarcinoma. J Hepatobiliary Pancreat Surg 2003; 10: 265281.
  • 46
    Olnes MJ, Erlich R. A review and update on cholangiocarcinoma. Oncology 2004; 66: 167179.
  • 47
    Berthiaume EP, Wands J. The molecular pathogenesis of cholangiocarcinoma. Semin Liver Dis 2004; 24: 127137.
  • 48
    Ohashi K, Tsutsumi M, Nakajima Y, Nakano H, Konishi Y. Ki-ras point mutations and proliferation activity in biliary tract carcinomas. Br J Cancer 1996; 74: 930935.
  • 49
    Isa T, Tomita S, Nakachi A, Miyazato H, Shimoji H, Kusano T, et al. Analysis of microsatellite instability, K-ras gene mutation and p53 protein overexpression in intrahepatic cholangiocarcinoma. Hepatogastroenterology 2002; 49: 604608.
  • 50
    Hidaka E, Yanagisawa A, Seki M, Takano K, Setoguchi T, Kato Y. High frequency of K-ras mutations in biliary duct carcinomas of cases with a long common channel in the papilla of Vater. Cancer Res 2000; 60: 522524.
  • 51
    Ohashi K, Nakajima Y, Kanehiro H, Tsutsumi M, Taki J, Aomatsu Y, et al. Ki-ras mutations and p53 protein expressions in intrahepatic cholangiocarcinomas: relation to gross tumor morphology. Gastroenterology 1995; 109: 16121617.
  • 52
    Kang YK, Kim WH, Lee HW, Lee HK, Kim YI. Mutation of p53 and K-ras, and loss of heterozygosity of APC in intrahepatic cholangiocarcinoma. Lab Invest 1999; 79: 477483.
  • 53
    Tannapfel A, Sommerer F, Benicke M, Katalinic A, Uhlmann D, Witzigmann H, et al. Mutations of the BRAF gene in cholangiocarcinoma but not in hepatocellular carcinoma. Gut 2003; 52: 706712.
  • 54
    Hahn SA, Bartsch D, Schroers A, Galehdari H, Becker M, Ramaswamy A, et al. Mutations of the DPC4/Smad4 gene in biliary tract carcinoma. Cancer Res 1998; 58: 11241126.
  • 55
    Argani P, Shaukat A, Kaushal M, Wilentz RE, Su GH, Sohn TA, et al. Differing rates of loss of Dpc4 expression and of p53 overexpression among carcinomas of the proximal and distal bile ducts. Evidence for a biological distinction. Cancer 2001; 91: 13321341.
  • 56
    Taniai M, Higuchi H, Burgart LJ, Gores GJ. p16INK4a Promoter mutations are frequent in primary sclerosing cholangitis (PSC) and PSC-associated cholangiocarcinoma. Gastroenterology 2002; 123: 10901098.
  • 57
    Terada T, Ashida K, Endo K, Horie S, Maeta H, Matsunaga Y, et al. c-erbB-2 protein is expressed in hepatolithiasis and cholangiocarcinoma. Histopathology 1998; 33: 325331.
  • 58
    Terada T, Nakanuma Y, Sirica AE. Immunohistochemical demonstration of MET overexpression in human intrahepatic cholangiocarcinoma and in hepatolithiasis. Hum Pathol 1998; 29: 175180.
  • 59
    Aishima S-I, Taguchi K-I, Sugimachi K, Shimada M, Sugimachi K, Tsuneyoshi M. c-erbB-2 and c-Met expression relates to cholangiocarcinogenesis and progression of intrahepatic cholangiocarcinoma. Histopathology 2002; 40: 269278.
  • 60
    Ito Y, Takeda T, Sasaki Y, Sakon M, Monden M, Yamada T, et al. bcl-2 Expression in cholangiocellular carcinoma is inversely correlated with biologically aggressive phenotypes. Oncology 2000; 59: 6367.
  • 61
    Shimonishi T, Isse K, Shibata F, Aburatani I, Tsuneyama K, Sabit H, et al. Up-regulation of Fas ligand at early stages and down-regulation of Fas at progressed stages of intrahepatic cholangiocarcinoma reflect evasion from immune surveillance. HEPATOLOGY 2000; 32: 761769.
  • 62
    Ashida K, Terada T, Kitamura Y, Kaibara N. Expression of E-cadherin, α-catenin, β-catenin, and CD 44 (standard and variant isoforms) in human cholangiocarcinoma: an immunohistochemical study. HEPATOLOGY 1998; 27: 974982.
  • 63
    Endo K, Ashida K, Miyake N, Terada T. E-cadherin gene mutations in human intrahepatic cholangiocarcinoma. J Pathol 2001; 193: 310317.
  • 64
    Maeda T, Sepe P, Lahousse S, Tamaki S, Enjoji M, Wands JR, et al. Antisense oligodeoxynucleotides directed against aspartyl (asparaginyl) β-hydroxylase suppress migration of cholangiocarcinoma cells. J Hepatol 2003; 38: 615622.
  • 65
    Ito Y, Takeda T, Sasaki Y, Sakon M, Yamada T, Ishiguro S, et al. Expression of p57/Kip2 protein in extrahepatic bile duct carcinoma and intrahepatic cholangiocellular carcinoma. Liver 2002; 22: 145149.
  • 66
    Fiorentino M, Altimari A, D'Errico A, Gabusi E, Chieco P, Masetti M, et al. Low p27 expression is an independent predictor of survival for patients with either hilar or peripheral intrahepatic cholangiocarcinoma. Clin Cancer Res 2001; 7: 39943999.
  • 67
    Ito Y, Takeda T, Sasaki Y, Sakon M, Yamada T, Ishiguro S, et al. Expression and clinical significance of the G1-S modulators in intrahepatic cholangiocellular carcinoma. Oncology 2001; 60: 242251.
  • 68
    Tanaka S, Sugimachi K, Kameyama T, Maehara S, Shirabe K, Shimada M, et al. Human WISP1v, a member of the CCN family, is associated with invasive cholangiocarcinoma. HEPATOLOGY 2003; 37: 11221129.
  • 69
    Ozaki S, Harada K, Sanzen T, Watanabe K, Tsui W, Nakanuma Y. In situ nucleic acid detection of human telomerase in intrahepatic cholangiocarcinoma and its preneoplastic lesion. HEPATOLOGY 1999; 30: 914919.
  • 70
    Suh K-S, Chang S-H, Lee H-J, Roh HR, Kim SH, Lee KU. Clinical outcomes and apomucin expression of intrahepatic cholangiocarcinoma according to gross morphology. J Am Coll Surg 2002; 195: 782789.
  • 71
    Higashi M, Yonezawa S, Ho JJL, Tanaka S, Irimura T, Kim YS, et al. Expression of MUC1 and MUC2 mucin antigens in intrahepatic bile duct tumors: its relationship with a new morphological classification of cholangiocarcinoma. HEPATOLOGY 1999; 30: 13471355.
  • 72
    Matsumura N, Yamamoto M, Aruga A, Takasaki K, Nakano M. Correlation between expression of MUC1 core protein and outcome after surgery in mass-forming intrahepatic cholangiocarcinoma. Cancer 2002; 94: 11701776.
  • 73
    Shibahara H, Tamada S, Higashi M, Goto M, Batra S, Hollingsworth MA, et al. MUC4 is a novel prognostic factor of intrahepatic cholangiocarcinoma-mass forming type. HEPATOLOGY 2004; 39: 220229.
  • 74
    Boonla C, Wongkham S, Sheehan JK, Wongkham C, Bhudhisawasdi V, Tepsiri N, et al. Prognostic value of serum MUC5AC mucin in patients with cholangiocarcinoma. Cancer 2003; 98: 14381443.
  • 75
    Ishikawa A, Sasaki M, Ohira S, Ohta T, Oda K, Nimura Y, et al. Aberrant expression of CDX2 is closely related to the intestinal metaplasia and MUC2 expression in intraductal papillary neoplasm of the liver in hepatolithiasis. Lab Invest 2004; 84: 629638.
  • 76
    Ren P, Silberg DG, Sirica AE. Expression of an intestine-specific transcription factor (CDX1) in intestinal metaplasia and in subsequently developed intestinal type of cholangiocarcinoma in rat liver. Am J Pathol 2000; 156: 621627.
  • 77
    Lai G-H, Radaeva S, Nakamura T, Sirica AE. Unique epithelial cell production of hepatocyte growth factor/scatter factor by putative precancerous intestinal metaplasias and associated “intestinal-type” biliary cancer chemically induced in rat liver. HEPATOLOGY 2000; 31: 12571265.
  • 78
    Lai G-H, Zhang Z, Sirica AE. Celecoxib acts in a cyclooxygenase-2-independent manner and in synergy with emodin to suppress rat cholangiocarcinoma growth in vitro through a mechanism involving enhanced Akt inactivation and increased activation of caspases-9 and -3. Molec Cancer Therapeut 2003; 2: 265271.
  • 79
    Yokomuro S, Tsuji H, Lunz IIIJG, Sakamoto T, Ezure T, Murase N, et al. Growth control of human biliary epithelial cells by interleukin 6, hepatocyte growth factor, transforming growth factor β1, and activin A: comparison of a cholangiocarcinoma cell line with primary cultures of non-neoplastic biliary epithelial cells. HEPATOLOGY 2000; 32: 2635.
  • 80
    Wu T, Han C, Lunz IIIJG, Michalopoulos G, Shelhamer JH, Demetris AJ. Involvement of 85-kd cytosolic phospholipase A(2) and cyclooxygenase-2 in the proliferation of human cholangiocarcinoma cells. HEPATOLOGY 2002; 36: 363373.
  • 81
    Nzeako UC, Guicciardi ME, Yoon J-H, Bronk SF, Gores GJ. COX-2 inhibits Fas-mediated apoptosis in cholangiocarcinoma cells. HEPATOLOGY 2002; 35: 552559.
  • 82
    Benckert C, Jonas S, Cramer T, von Marschall Z, Schäfer G, Peters M, et al. Transforming growth factor β1 stimulates vascular endothelial growth factor gene transcription in human cholangiocellular carcinoma cells. Cancer Res 2003; 63: 10831092.
  • 83
    Pai R, Soreghan B, Szabo IL, Pavelka M, Baatar D, Tarnawski AS. Prostaglandin E2 transactivates EGF receptor: a novel mechanism for promoting colon cancer growth and gastrointestinal hypertrophy. Nat Med 2002; 8: 289293.
  • 84
    Pai R, Nakamura T, Moon WS, Tarnawski AS. Prostaglandins promote colon cancer cell invasion; signaling by cross-talk between two distinct growth factor receptors. FASEB J 2003; 17: 16401647.
  • 85
    Liu X-H, Kirschenbaum A, Lu M, Yao S, Klausner A, Preston C, et al. Prostaglandin E2 stimulates prostatic intraepithelial neoplasia cell growth through activation of the interleukin-6/GP130/STAT-3 signaling pathway. Biochem Biophys Res Commun 2002; 290: 249255.
  • 86
    Benoit V, Relic B, deLeval X, Chariot A, Merville M-P, Bours V. Regulation of HER-2 oncogene expression by cyclooxygenase-2 and prostaglandin E2. Oncogene 2004; 23: 16311635.
  • 87
    Eibl G, Bruemmer D, Okada Y, Duffy JP, Law RE, Reber HA, et al. PGE2 is generated by specific COX-2 activity and increases VEGF production in COX-2-expressing human pancreatic cancer cells. Biochem Biophys Res Commun 2003; 306: 887897.
  • 88
    Fukuda R, Kelly B, Semenza GL. Vascular endothelial growth factor gene expression in colon cancer cells exposed to prostaglandin E2 is mediated by hypoxia-inducible factor 1. Cancer Res 2003; 63: 23302334.
  • 89
    Wang X, DeFrances MC, Dai Y, Pediaditakis P, Johnson C, Bell A, et al. A mechanism of cell survival: sequestration of Fas by the HGF receptor Met. Molec Cell 2002; 9: 411421.
  • 90
    Vadlamudi R, Mandal M, Adam L, Steinbach G, Mendelsohn J, Kumar R. Regulation of cyclooxygenase-2 pathway by HER2 receptor. Oncogene 1999; 18: 305314.
  • 91
    Qiu Y, Ravi L, Kung H-J. Requirement of ErbB2 for signaling by interleukin-6 in prostate carcinoma cells. Nature 1998; 393: 8385.
  • 92
    Grant SL, Hammacher A, Douglas AM, Goss GA, Mansfield RK, Heath JK, et al. An unexpected biochemical and functional interaction between gp 130 and the EGF receptor family in breast cancer cells. Oncogene 2002; 21: 460474.
  • 93
    Park YG, Kang SK, Kim WJ, Lee YC, Kim CH. Effects of TGF-β, TNF-α, IL-β and IL-6 alone or in combination, and tyrosine kinase inhibitor on cyclooxygenase expression, prostaglandin E (2) production and bone resorption in mouse calvarial bone cells. Int J Biochem Cell Biol 2004; 36: 22702280.
  • 94
    Dawn B, Xuan YT, Guo Y, Rezazadeh A, Stein AB, Hunt G, et al. IL-6 plays an obligatory role in late preconditioning via JAK-STAT signaling and upregulation of iNOS and COX-2. Cardiovasc Res 2004; 64: 6171.
  • 95
    Li X, Wang L, Nunes DP, Troxler RF, Offner GD. Pro-inflammatory cytokines up-regulate MUC1 gene expression in oral epithelial cells. J Dent Res 2003; 82: 883887.
  • 96
    Scibetta AG, Albanese I, Morris J, Cooper L, Downward J, Rowe P-P, et al. Regulation of MUC1 expression in human mammary cell lines by the c-ErbB2 and Ras signaling pathways. DNA Cell Biol 2001; 20: 265274.
  • 97
    Laughner E, Taghavi P, Chiles K, Mahon PC, Semenza GL. HER2 (neu) signaling increases the rate of hypoxia-inducible factor 1α (HIF-1α) synthesis: novel mechanism for HIF-1-mediated vascular endothelial growth factor expression. Mol Cell Biol 2001; 21: 39954004.
  • 98
    Yen L, Benlimame N, Nie Z-R, Xiao D, Wang T, Al Moustafa A-E, et al. Differential regulation of tumor angiogenesis by distinct ErbB homo- and heterodimers. Molec Biol Cell 2002; 13: 40294044.
  • 99
    Goueli BS, Janknecht R. Upregulation of the catalytic telomerase subunit by the transcription factor ER 81 and oncogenic HER2/Neu, Ras, or Raf. Mol Cell Biol 2004; 24: 2535.
  • 100
    Carraway KL, Ramsauer VP, Haq B, Carraway CAC. Cell signaling through membrane mucins. Biol Essays 2002; 25: 6671.
  • 101
    Ochiai A, Akimoto S, Kanai Y, Shibata T, Oyama T, Hirohashi S. c-erbB-2 Gene product associates with catenins in human cancer cells. Biochem Biophys Res Commun 1994; 205: 7378.
  • 102
    Mariette C, Perrais M, Leteurtre E, Jonckheere N, Hémon B, Pigny P, et al. Transcriptional regulation of human mucin MUC4 by bile acids in oesophageal cancer cells is promoter-dependent and involves activation of the phosphatidylinosital 3-kinase signaling pathway. Biochem J 2004; 377: 701708.
  • 103
    Schroeder JA, Adriance MC, Thompson MC, Camenisch TD, Gendler SJ. MUC1 alters β-catenin-dependent tumor formation and promotes cellular invasion. Oncogene 2003; 22: 13241332.
  • 104
    Herynk MH, Tsan R, Radinsky R, Gallick GE. Activation of c-Met in colorectal carcinoma cells leads to constitutive association of tyrosine-phosphorylated β-catenin. Clin Experiment Metastasis 2003; 20: 291300.
  • 105
    Monga SPS, Mars WM, Pediaditakis P, Bell A, Mulé K, Bowen WC, et al. Hepatocyte growth factor induces Wnt-independent nuclear translocation of β-catenin after Met-β-catenin dissociation in hepatocytes. Cancer Res 2002; 62: 20642071.
  • 106
    Easwaran V, Lee SH, Inge L, Guo L, Goldbeck C, Garrett E, et al. β-Catenin regulates vascular endothelial growth factor expression in colon cancer. Cancer Res 2003; 63: 31453153.
  • 107
    Yazumi S, Ko K, Watanabe N, Shinohara H, Yoshikawa K, Chiba T, et al. Disrupted transforming growth factor-β signaling and deregulated growth in human biliary tract cancer cells. Int J Cancer 2000; 86: 782789.
  • 108
    Park J, Tadlock L, Gores GJ, Patel T. Inhibition of interleukin 6-mediated mitogen-activated protein kinase activation attenuates growth of a cholangiocarcinoma cell line. HEPATOLOGY 1999; 30: 11281133.
  • 109
    Date K, Matsumoto K, Kuba K, Shimura H, Tanaka M, Nakamura T. Inhibition of tumor growth and invasion by a four-kringle antagonist (HGF/NK4) for hepatocyte growth factor. Oncogene 1998; 17: 30453054.
  • 110
    Wu GS, Zou SQ, Liu ZR, Tang ZH, Wang JH. Celecoxib inhibits proliferation and induces apoptosis via prostaglandin E2 pathway in human cholangiocarcinoma cell lines. World J Gastroenterol 2003; 9: 13021306.
  • 111
    Wu GS, Zou SQ, Wu XY, Qui FZ. Effect of cyclooxygenase-2 antisense vector on proliferation of human cholangiocarcinoma cells. Chin Med Sci J 2004; 19: 8992.
  • 112
    Lai G-H, Sirica AE. Effect of GW572016 on ERBB-2 signaling, cell growth, and apoptosis in rat biliary cancer cells [Abstract]. FASEB J 2003; 17: A257.
  • 113
    Okano H, Shiraki K, Inoue H, Kawakita T, Deguchi M, Sugimoto K, et al. The PPARγ ligand, 15-deoxy-Δ12, 14-PGJ2, regulates apoptosis-related protein expression in cholangio cell carcinoma cells. Int J Mol Med 2003; 12: 867870.
  • 114
    Han C, Demetris AJ, Michalopoulos GK, Zhan Q, Shelhamer JH, Wu T. PPARγ ligands inhibit cholangiocarcinoma cell growth through p53-dependent GADD45 and p21WAF1/Cip1 pathway. HEPATOLOGY 2003; 38: 167177.
  • 115
    Katayose Y, Kudo T, Suzuki M, Shinoda M, Saijyo S, Sakurai N, et al. MUC1-specific targeting immunotherapy with bispecific antibodies: inhibition of xenografted human bile duct carcinoma growth. Cancer Res 1996; 56: 42054212.
  • 116
    Ahn E-Y, Pan G, Vickers SM, McDonald JM. INF-γ upregulates apoptosis-related molecules and enhances FAS-mediated apoptosis in human cholangiocarcinoma. Int J Cancer 2002; 100: 445451.
  • 117
    Tanaka S, Sugimachi K, Shirabe K, Shimada M, Wands JR, Sugimachi K. Expression and antitumor effects of TRAIL in human cholangiocarcinoma. HEPATOLOGY 2000; 32: 523527.
  • 118
    Yamamoto K, Katayose Y, Suzuki M, Unno M, Sasaki T, Mizuma M, et al. Adenovirus expressing p27KIP1 induces apoptosis against cholangiocarcinoma cells by triggering Fas ligand on the cell surface. Hepatogastroenterology 2003; 50: 18471853.
  • 119
    Nagi P, Vickers SM, Davydova J, Adachi Y, Takayama K, Barker S, et al. Development of a therapeutic adenoviral vector for cholangiocarcinoma combining tumor-restricted gene expression and infectivity enhancement. J Gastrointest Surg 2003; 7: 364371.
  • 120
    Alpini G, Kanno N, Phinizy JL, Glaser S, Francis H, Taffetani S, et al. Tauroursodeoxycholate inhibits human cholangiocarcinoma growth via Ca2+-PKC, and MAPK-dependent pathways. Am J Gastrointest Liver Physiol 2004; 286: G973G982.
  • 121
    Singh AP, Moniaux N, Chauhan SC, Meza JL, Batra SK. Inhibition of MUC4 expression suppresses pancreatic tumor cell growth and metastasis. Cancer Res 2004; 64: 622630.
  • 122
    Shammas MA, Koley H, Beer DG, Li C, Goyal RK, Munshi NC. Growth arrest, apoptosis, and telomere shortening of Barrett's-associated adenocarcinoma cells by a telomerase inhibitor. Gastroenterology 2004; 126: 13371346.
  • 123
    Kwong KY, Zou Y, Day C-P, Hung M-C. The suppression of colon cancer cell growth in nude mice by targeting β-catenin/TCF pathway. Oncogene 2002; 21: 83408346.
  • 124
    Bockhorn M, Tsuzuki Y, Xu L, Frilling A, Broelsch CE, Fukumura D. Differential vascular and transcriptional responses to anti-vascular endothelial growth factor antibody in orthotopic human pancreatic cancer xenografts. Clin Cancer Res 2003; 9: 42214226.
  • 125
    Subramanian G, Schwarz RE, Higgins L, Mc Enroe G, Chakravarty S, Dugar S, et al. Targeting endogenous transforming growth factor β receptor signaling in SMAD4-deficient human pancreatic carcinoma cells inhibits their invasive phenotype. Cancer Res 2004; 64: 52005211.
  • 126
    Mann M, Sheng H, Shao J, Williams CS, Pisacane PI, Sliwkowski MX, et al. Targeting cyclooxygenase 2 and HER-2/neu pathways inhibits colorectal carcinoma growth. Gastroenterology 2001; 120: 17131719.
  • 127
    Tortora G, Caputo R, Damiano V, Melisi D, Bianco R, Fontanini, G, et al. Combination of a selective cyclooxygenase-2 inhibitor with epidermal growth factor receptor tyrosine kinase inhibitor ZD 1839 and protein kinase A antisense causes cooperative antitumor and antiangiogenic effect. Clin Cancer Res 2003; 9: 15661572.
  • 128
    Yeh CN, Maitra A, Lee KF, Jan YY, Chen MF. Thioacetamide-induced intestinal-type cholangiocarcinoma in rat: an animal model recapitulating the multi-stage progression of human cholangiocarcinoma. Carcinogenesis 2004; 25: 631636.