SEARCH

SEARCH BY CITATION

References

  • 1
    Fisk JD, Pontefract A, Ritvo PF, Archibald CJ, Murray TJ. The impact of fatigue on patients with multiple sclerosis. Can J Neurol Sci 1994; 21: 914.
  • 2
    Huet P-M, Deslauriers J, Tran A, Faucher C, Charbounneau J. Impact of fatigue in the quality of life of patients with primary biliary cirrhosis. Am J Gastroenterol 2000; 95: 760767.
    Direct Link:
  • 3
    Foster GR, Goldin RD, Thomas HC. Chronic hepatitis C virus infection causes a significant reduction in quality of life in the absence of cirrhosis. HEPATOLOGY 1999; 27: 209212.
  • 4
    Forton DM, Patel N, Prince M, Oatridge A, Hamilton G, Goldblatt J, et al. Fatigue and primary biliary cirrhosis: association of globus pallidus magnetisation transfer ratio measurements with fatigue severity and blood manganese levels. Gut 2004; 53: 587592.
  • 5
    Forton DM, Allsop JM, Main J, Foster GR, Thomas HC, Taylor-Robinson SD. Evidence for a cerebral effect of the hepatitis C virus. Lancet 2001; 358: 3839.
  • 6
    Jones EA. Fatigue associated with chronic liver disease: a riddle wrapped in a mystery inside an enigma. HEPATOLOGY 1995; 22: 16061608.
  • 7
    Jalan R, Gilson H, Lombard MG. Patients with primary biliary cirrhosis have central but not peripheral fatigue [Abstract]. HEPATOLOGY 1995; 24(Pt 2): A162.
  • 8
    Burak KW, Le T, Swain MG. Increased sensitivity to the locomotor-activating effects of corticotrophin releasing hormone in cholestatic rats. Gastroenterology 2002; 122: 681688.
  • 9
    Bearn J, Allain T, Coskeran P, Munro N, Butler J, McGregor A, et al. Neuroendocrine responses to d-fenfluramine and insulin-induced hypoglycemia in chronic fatigue syndrome. Biol Psychol 1995; 37: 245252.
  • 10
    Swain MG, Patchev V, Vergalla J, Chronsos GP, Jones EA. Supression of hypothalamic-pituitary-adrenal axis responsiveness to stress in a rat model of acute cholestasis. J Clin Invest 1993; 91: 19031908.
  • 11
    Swain MG, Maric M. Improvement in cholestasis-associated fatigue with a serotonin receptor agonist using a novel rat model of fatigue assessment. HEPATOLOGY 1997; 25: 291294.
  • 12
    Jones EA. Altered central serotoninergic neurotransmission: a potential mechanism for profound fatigue complicating chronic hepatitis C. Med Hypotheses 2001; 57: 133134.
  • 13
    Tricklebank MD, Forler C, Fozard JR. The involvement of subtypes of the 5-HT1 receptor and of catecholaminergic systems in the behavioural response to 8-hydroxy-2-(di-n-propylamino)tetralin in the rat. Eur J Pharmacol 1984; 106: 271282.
  • 14
    Goodwin GM, Green AR. A behavioural and biochemical study in mice and rats of putative agonists and antagonists for 5-HT1 and 5-HT2 receptors. Br J Pharmacol 1985; 84: 743753.
  • 15
    Jones EA, Yurdaydin C. Is fatigue associated with cholestasis mediated by altered central neurotransmission? HEPATOLOGY 1997; 25: 492494.
  • 16
    Cameron GR, Oakley CL. Ligation of the common bile duct. J Pathol Bacteriol 1932; 35: 769798.
  • 17
    Weiss JM, Simson PG, Hoffman LJ, Ambrose MJ, Cooper S, Webster A. Infusion of adrenergic receptor agonists and antagonists into the locus coeruleus and ventricular system of the brain: effects on swim-motivated and spontaneous motor activity. Neuropharmacology 1986; 25: 367384.
  • 18
    Deakin JFW, Green AR. The effects of putative 5-hydroxytrytamine antagonists on the behaviour produced by administration of tranylcypromine and L-trytophan or L-dopa to rats. Br J Pharmacol 1978; 64: 201209.
  • 19
    Çelik T, Uzbay IT, Çınar K, Bozkaya H, Uzunalimoğlu Ö, Yurdaydin C. Combination treatment of hepatic encephalopathy due to thioacetamide-induced fulminant hepatic failure in the rat with benzodiazepine and opioid receptor antagonists. J Hepatol 1999; 31: 880886.
  • 20
    König JFR, Klippel RA. The Rat Brain: A Stereotactic Atlas for the Forebrain and Lower Parts of Brain Stem. Huntington, New York: Krieger Publishing Co., 1970.
  • 21
    Lowry OH, Rosebrough NJ, Farr AL, Randall RJ. Protein measurement with Folin reagent. J Biol Chem 1951; 193: 265275.
  • 22
    Paxinos G, Watson C. The Rat Brain in Stereotaxic Coordinates. 5th ed. London: Academic Press, 1986.
  • 23
    Wolf WA, Kuhn DM. Uptake and release of trytophan and serotonin: an HPLC method to study the flux of endogenous 5-hydroxyindoles through synaptosomes. J Neurochem 1986; 46: 6167.
  • 24
    De Simoni MG, Sokola A, Fodritto F, Dal Toso G, Algeri S. Functional meaning of tryptophan-induced increase of 5-HT metabolism as clarified by in vivo voltammetry. Brain Res 1987; 411: 8994.
  • 25
    Bergqvist PB, Vogels BA, Bosman DK, Maas MA, Hjorth S, Chamuleau RA, et al. Neocortical dialysate monoamines of rats after acute, subacute and chronic liver shunt. J Neurochem 1995; 64: 12381244.
  • 26
    Bergqvist PBF, Hjorth S, Apelqvist G, Bengtsson F. Acute effects of L-tryptophan on the brain extracellular 5-HT and 5-HIAA levels in chronic portal-systemic encephalopathy. Metab Brain Dis 1996; 11: 269278.
  • 27
    Burak KW, Le T, Swain MG. Increased midbrain 5-HT1A receptor number and responsiveness in cholestatic rats. Brain Res 2001; 892: 376379.
  • 28
    Blier P, Pineyro G, El Mansari M, Bergeron R, De Montigny C. Role of somatodendritic 5-HT autoreceptors in modulating 5-HT neurotransmission. Ann N Y Acad Sci 1998; 861: 204216.
  • 29
    Kreiss DS, Lucki I. Chronic administration of the 5-HT1A rexeptor agonist 8-OH DPAT differentially desensitizes 5-HT1A autoreceptors of the dorsal and median raphe nuclei. Synapse 1997; 25: 107116.
  • 30
    Casanovas JM, Vilaró MT, Mengod G, Artigas F. Differential regulation of somatodendritic serotonin 5-HT1A receptors by 2-week treatments with the selective agonists alnespirone (S-20499) and 8-hydroxy-2-(di-n-propylamino)tetralin: microdialysis and autoradiographic studies in rat brain. J Neurochem 1999; 72: 262272.
  • 31
    Foreman MM, Fuller RW, Rasmussen K, Nelson DL, Calligaro DO, Zhang L, et al. Pharmacological characterization of LY293284: a 5-HT1A receptor agonist with high potency and selectivity. J Pharmacol Exp Ther 1994; 270: 12701281.
  • 32
    Li Q, Muma NA, Van de Kar LD. Chronic fluoxetine induces a gradual desensitization of 5-HT1A receptors: reductions in hypothalamic and midbrain Gi and Go proteins and in neuroendocrine responses to a 5-HT1A agonist. J Pharmacol Exp Ther 1996; 279: 10351042.
  • 33
    Li Q, Muma NA, Battaglia G, Van de Kar LD. A desensitization of hyphalamic 5-HT1A receptors by repeated injections of paroxetine: reduction in the levels of Gi and Go proteins and neuroendocrine responses, but not in the density of 5-HT1A receptors. J Pharmacol Exp Ther 1997; 282: 15811590.
  • 34
    Raap DK, Evans S, Garcia F, Li Q, Muma NA, Wolf WA, et al. Daily injections of fluoxetine induce dose-dependent desensitization of hypothalamic 5-HT1A receptors: reductions in neuroendocrine responses to 8-OH-DPAT and in levels of Gz and Gi proteins. J Pharmacol Exp Ther 1999; 288: 98106.
  • 35
    Hoyer D, Clarke DE, Fozard JR, Hartig PR, Martin GR, Mylecharane EJ, et al. International Union of Pharmacology classification of receptors for 5-hydroxytryptamine (serotonin). Pharmacol Rev 1994; 46: 157203.
  • 36
    Jones EA. Relief from profound fatigue associated with chronic liver disease by long-term ondansetron therapy. Lancet 1999; 354: 397.
  • 37
    Cauch-Dudek K, Abbey S, Stewart DE, Heathcote EJ. Fatigue in primary biliary cirrhosis. Gut 1998; 43: 705710.
  • 38
    Goldblatt J, Taylor PJS, Lipman T, Prince MI, Baragiotta A, Bassendine MF, et al. The true impact of fatigue in primary biliary cirrhosis: a population study. Gastroenterology 2002; 122: 12351241.
  • 39
    Lucki I. The spectrum of behaviors influenced by serotonin. Biol Psychiatry 1998; 44: 151162.