SEARCH

SEARCH BY CITATION

References

  • 1
    Nakae D. Endogenous liver carcinogenesis in the rat. Pathol Int 1999; 49: 10281042.
  • 2
    Zeisel SH, Albright CD, Shin OH, Mar MH, Salganik RI, da Costa KA. Choline deficiency selects for resistance to p53-independent apoptosis and causes tumorigenic transformation of rat hepatocytes. Carcinogenesis 1997; 18: 731738.
  • 3
    Chandar N, Amenta J, Kandala JC, Lombardi B. Liver cell turnover in rats fed a choline-devoid diet. Carcinogenesis 1987; 8: 669673.
  • 4
    Ghoshal AK, Farber E. Liver biochemical pathology of choline deficiency and of methyl group deficiency: a new orientation and assessment. Histol Histopathol 1995; 10: 457462.
  • 5
    Nakae D, Yoshiji H, Mizumoto Y, Horiguchi K, Shiraiwa K, Tamura K, et al. High incidence of hepatocellular carcinomas induced by a choline deficient L-amino acid defined diet in rats. Cancer Res 1992; 52: 50425045.
  • 6
    Floyd RA, Kotake Y, Hensley K, Nakae D, Konishi Y. Reactive oxygen species in choline deficiency induced carcinogenesis and nitrone inhibition. Mol Cell Biochem 2002; 234–235: 195203.
  • 7
    da Costa KA, Cochary EF, Blusztajn JK, Garner SC, Zeisel SH. Accumulation of 1,2-sn-diradylglycerol with increased membrane-associated protein kinase C may be the mechanism for spontaneous hepatocarcinogenesis in choline-deficient rats. J Biol Chem 1993; 268: 21002105.
  • 8
    Endoh T, Tang Q, Denda A, Noguchi O, Kobayashi E, Tamura K, et al. Inhibition by acetylsalicylic acid, a cyclo-oxygenase inhibitor, and p-bromophenacylbromide, a phospholipase A2 inhibitor, of both cirrhosis and enzyme-altered nodules caused by a choline-deficient, L-amino acid-defined diet in rats. Carcinogenesis 1996; 17: 467475.
  • 9
    Dizik M, Christman JK, Wainfan E. Alterations in expression and methylation of specific genes in livers of rats fed a cancer promoting methyl-deficient diet. Carcinogenesis 1991; 12: 13071312.
  • 10
    Tsujiuchi T, Tsutsumi M, Sasaki Y, Takahama M, Konishi Y. Hypomethylation of CpG sites and c-myc gene overexpression in hepatocellular carcinomas, but not hyperplastic nodules, induced by a choline-deficient L-amino acid-defined diet in rats. Jpn J Cancer Res 1999; 90: 909913.
  • 11
    Alizadeh AA, Ross DT, Perou CM, van de RM. Towards a novel classification of human malignancies based on gene expression patterns. J Pathol 2001; 195: 4152.
  • 12
    Garber ME, Troyanskaya OG, Schluens K, Petersen S, Thaesler Z, Pacyna-Gengelbach M, et al. Diversity of gene expression in adenocarcinoma of the lung. Proc Natl Acad Sci U S A 2001; 98: 1378413789.
  • 13
    Sorlie T, Perou CM, Tibshirani R, Aas T, Geisler S, Johnsen H, et al. Gene expression patterns of breast carcinomas distinguish tumor subclasses with clinical implications. Proc Natl Acad Sci U S A 2001; 98: 1086910874.
  • 14
    Bertucci F, Finetti P, Rougemont J, Charafe-Jauffret E, Nasser V, Loriod B, et al. Gene expression profiling for molecular characterization of inflammatory breast cancer and prediction of response to chemotherapy. Cancer Res 2004; 64: 85588565.
  • 15
    Paules R. Phenotypic anchoring: linking cause and effect. Environ Health Perspect 2003; 111: A338A339.
  • 16
    Denda A, Kitayama W, Murata A, Kishida H, Sasaki Y, Kusuoka O, et al. Increased expression of cyclooxygenase-2 protein during rat hepatocarcinogenesis caused by a choline-deficient, L-amino acid-defined diet and chemopreventive efficacy of a specific inhibitor, nimesulide. Carcinogenesis 2002; 23: 245256.
  • 17
    Irizarry RA, Hobbs B, Collin F, Beazer-Barclay YD, Antonellis KJ, Scherf U, et al. Exploration, normalization, and summaries of high density oligonucleotide array probe level data. Biostatistics 2003; 4: 249264.
  • 18
    Eisen MB, Spellman PT, Brown PO, Botstein D. Cluster analysis and display of genome-wide expression patterns. Proc Natl Acad Sci U S A 1998; 95: 1486314868.
  • 19
    Sorlie T, Tibshirani R, Parker J, Hastie T, Marron JS, Nobel A, et al. Repeated observation of breast tumor subtypes in independent gene expression data sets. Proc Natl Acad Sci U S A 2003; 100: 84188423.
  • 20
    Tusher VG, Tibshirani R, Chu G. Significance analysis of microarrays applied to the ionizing radiation response. Proc Natl Acad Sci U S A 2001; 98: 51165121.
  • 21
    Rusyn I, Denissenko MF, Wong VA, Butterworth BE, Cunningham ML, Upton PB, et al. Expression of base excision repair enzymes in rat and mouse liver is induced by peroxisome proliferators and is dependent upon carcinogenic potency. Carcinogenesis 2000; 21: 21412145.
  • 22
    Nakamura J, La DK, Swenberg JA. 5′-nicked apurinic/apyrimidinic sites are resistant to β-elimination by β-polymerase and are persistent in human cultured cells after oxidative stress. J Biol Chem 2000; 275: 53235328.
  • 23
    Nakamura J, Swenberg JA. Endogenous apurinic/apyrimidinic sites in genomic DNA of mammalian tissues. Cancer Res 1999; 59: 25222526.
  • 24
    Zielinska-Park J, Nakamura J, Swenberg JA, Aitken MD. Aldehydic DNA lesions in calf thymus DNA and HeLa S3 cells produced by bacterial quinone metabolites of fluoranthene and pyrene. Carcinogenesis 2004; 25: 17271733.
  • 25
    Khatri P, Bhavsar P, Bawa G, Draghici S. Onto-Tools: an ensemble of web-accessible, ontology-based tools for the functional design and interpretation of high-throughput gene expression experiments. Nucleic Acids Res 2004; 32: W449W456.
  • 26
    Lombardi B, Pani P, Schlunk FF. Choline-deficiency fatty liver: impaired release of hepatic triglycerides. J Lipid Res 1968; 9: 437446.
  • 27
    Nishizuka Y. Studies and perspectives of protein kinase C. Science 1986; 233: 305312.
  • 28
    Weinstein IB. The role of protein kinase C in growth control and the concept of carcinogenesis as a progressive disorder in signal transduction. Adv Second Messenger Phosphoprotein Res 1990; 24: 307316.
  • 29
    Yen CL, Mar MH, Craciunescu CN, Edwards LJ, Zeisel SH. Deficiency in methionine, tryptophan, isoleucine, or choline induces apoptosis in cultured cells. J Nutr 2002; 132: 18401847.
  • 30
    Lotersztajn S, Julien B, Teixeira-Clerc F, Grenard P, Mallat A. Hepatic fibrosis: molecular mechanisms and drug targets. Annu Rev Pharmacol Toxicol 2004.
  • 31
    Kershenobich SD, Weissbrod AB. Liver fibrosis and inflammation: a review. Ann Hepatol 2003; 2: 159163.
  • 32
    Iredale JP, Murphy G, Hembry RM, Friedman SL, Arthur MJ. Human hepatic lipocytes synthesize tissue inhibitor of metalloproteinases-1. Implications for regulation of matrix degradation in liver. J Clin Invest 1992; 90: 282287.
  • 33
    Herbst H, Wege T, Milani S, Pellegrini G, Orzechowski HD, Bechstein WO, et al. Tissue inhibitor of metalloproteinase-1 and -2 RNA expression in rat and human liver fibrosis. Am J Pathol 1997; 150: 16471659.
  • 34
    Zeeberg BR, Feng W, Wang G, Wang MD, Fojo AT, Sunshine M, et al. GoMiner: a resource for biological interpretation of genomic and proteomic data. Genome Biol 2003; 4: R28.
  • 35
    Rusyn I, Asakura S, Pachkowski B, Bradford BU, Denissenko MF, Peters JM, et al. Expression of base excision DNA repair genes is a sensitive biomarker for in vivo detection of chemical-induced chronic oxidative stress: identification of the molecular source of radicals responsible for DNA damage by peroxisome proliferators. Cancer Res 2004; 64: 10501057.
  • 36
    Lopatina NG, Vanyushin BF, Cronin GM, Poirier LA. Elevated expression and altered pattern of activity of DNA methyltransferase in liver tumors of rats fed methyl-deficient diets. Carcinogenesis 1998; 19: 17771781.
  • 37
    Wakasugi N, Tagaya Y, Wakasugi H, Mitsui A, Maeda M, Yodoi J, et al. Adult T-cell leukemia-derived factor/thioredoxin, produced by both human T-lymphotropic virus type I- and Epstein-Barr virus-transformed lymphocytes, acts as an autocrine growth factor and synergizes with interleukin 1 and interleukin 2. Proc Natl Acad Sci U S A 1990; 87: 82828286.
  • 38
    European Standards Committee on Oxidative DNA Damage (ESCODD). Measurement of DNA oxidation in human cells by chromatographic and enzymic methods. Free Radic Biol Med 2003; 34: 10891099.
  • 39
    ESCODD. Measurement of DNA oxidation in human cells by chromatographic and enzymic methods. Free Radic Biol Med 2003; 34: 10891099.
  • 40
    Yoshiji H, Nakae D, Mizumoto Y, Horiguchi K, Tamura K, Denda A, et al. Inhibitory effect of dietary iron deficiency on inductions of putative preneoplastic lesions as well as 8-hydroxydeoxyguanosine in DNA and lipid peroxidation in the livers of rats caused by exposure to a choline-deficient L-amino acid defined diet. Carcinogenesis 1992; 13: 12271233.
  • 41
    Cheng KC, Cahill DS, Kasai H, Nishimura S, Loeb LA. 8-Hydroxyguanine, an abundant form of oxidative DNA damage, causes G–-T and A–-C substitutions. J Biol Chem 1992; 267: 166172.
  • 42
    Luczaj W, Skrzydlewska E. DNA damage caused by lipid peroxidation products. Cell Mol Biol Lett 2003; 8: 391413.
  • 43
    Zindy P, Andrieux L, Bonnier D, Musso O, Langouet S, Campion JP, et al. Upregulation of DNA repair genes in active cirrhosis associated with hepatocellular carcinoma. FEBS Lett 2005; 579: 9599.
  • 44
    Jungst C, Cheng B, Gehrke R, Schmitz V, Nischalke HD, Ramakers J, et al. Oxidative damage is increased in human liver tissue adjacent to hepatocellular carcinoma. HEPATOLOGY 2004; 39: 16631672.
  • 45
    Chen X, Cheung ST, So S, Fan ST, Barry C, Higgins J, et al. Gene expression patterns in human liver cancers. Mol Biol Cell 2002; 13: 19291939.