• 1
    Peters K. Exceptional matters: clinical research from bedside to bench. Clin Med 2004; 4: 551566.
  • 2
    Kowalski HJ, Abelmann WH. The cardiac output at rest in Laennec's cirrhosis. J Clin Invest 1953; 32: 10251033.
  • 3
    Vallance P, Moncada S. Hyperdynamic circulation in cirrhosis: a role for nitric oxide? Lancet 1991; 337: 776778.
  • 4
    Groszmann RJ. Hyperdynamic circulation of liver disease 40 years later: pathophysiology and clinical consequences. Hepatology 1994; 20: 13591363.
  • 5
    Murray JF, Dawson AM, Sherlock S. Circulatory changes in chronic liver disease. Am J Med 1958; 24: 358367.
  • 6
    Guyton AC. Arterial Pressure and Hypertension. Philadelphia: WB Saunders, 1980.
  • 7
    Genecin P, Polio J, Groszmann RJ. Na restriction blunts expansion of plasma volume and ameliorates hyperdynamic circulation in portal hypertension. Am J Physiol Gastrointest Liver Physiol 1990; 259: G498G503.
  • 8
    Morgan JS, Groszmann RJ, Rojkind M, Enriquez R. Hemodynamic mechanisms of emerging portal hypertension caused by schistosomiasis in the hamster. Hepatology 1990; 11: 98104.
  • 9
    Carbajal EV, Prakash C, Deedwania C. Congestive heart failure. Chapter 18. In: CrawfordMH, ed. Current Diagnosis & Treatment in Cardiology. 2nd ed. New York: McGraw Hill, 2003: 217249.
  • 10
    Vaughan RB, Angus PW, Chin-Dusting JP. Evidence for altered vascular responses to exogenous endothelin-1 in patients with advanced cirrhosis with restoration of the normal vasoconstrictor response following successful liver transplantation. Gut 2004; 53: 470471.
  • 11
    Aller R, de Luis DA, Moreira V, Boixeda D, Moya JL, Fernandez-Rodriguez CM, San Roman AL, et al. The effect of liver transplantation on circulating levels of estradiol and progesterone in male patients: parallelism with hepatopulmonary syndrome and systemic hyperdynamic circulation improvement. J Endocrinol Invest 2001; 24: 503509.
  • 12
    Moreno AH, Burchell AR, Rousselot LM, Panke WF, Slafsky F, Burke JH. Portal blood flow in cirrhosis of the liver. J Clin Invest 1967; 46: 436445.
  • 13
    Kotelanski B, Groszmann R, Cohn JN. Circulation times in the splanchnic and hepatic beds in alcoholic liver disease. Gastroenterology 1972; 63: 102111.
  • 14
    Cohn JN, Khatri IM, Groszmann RJ, Kotelanski B. Hepatic blood flow in alcoholic liver disease measured by an indicator dilution technic. Am J Med 1972; 53: 704714.
  • 15
    Groszmann RJ, Kotelanski B, Cohn JN. Different patterns of porta-systemic shunting in cirrhosis of the liver studied by an indicator dilution technique. Acta Gastroenterol Latinoam 1971; 3: 111116.
  • 16
    Groszmann RJ, Vorobioff J, Riley E. Splanchnic hemodynamics in portal-hypertensive rats: measurement with gamma-labeled microspheres. Am J Physiol 1982; 242: G156G160.
  • 17
    Vorobioff J, Bredfeldt JE, Groszmann RJ. Hyperdynamic circulation in portal-hypertensive rat model: a primary factor for maintenance of chronic portal hypertension. Am J Physiol 1983; 244: G52G57.
  • 18
    Vorobioff J, Bredfeldt JE, Groszmann RJ. Increased blood flow through the portal system in cirrhotic rats. Gastroenterology 1984; 87: 11201126.
  • 19
    Piscaglia F, Gaiani S, Gramantieri L, Zironi G, Siringo S, Bolondi L. Superior mesenteric artery impedance in chronic liver diseases: relationship with disease severity and portal circulation. Am J Gastroenterol 2000; 95: 551552.
  • 20
    Abraldes JG, Iwakiri Y, Loureiro-Silva M, Haq O, Sessa WC, Groszmann RJ. Mild increases in portal pressure up-regulate VEGF and eNOS in the intestinal microcirculation leading to hyperdynamic state. Am J Physiol Gastrointest Liver Physiol 2006. In press.
  • 21
    Tsai MH, Iwakiri Y, Cadelina G, Sessa WC, Groszmann RJ. Mesenteric vasoconstriction triggers nitric oxide overproduction in the superior mesenteric artery of portal hypertensive rats. Gastroenterology 2003; 125: 14521461.
  • 22
    Fallon MB. Mechanisms of pulmonary vascular complications of liver disease: hepatopulmonary syndrome. J Clin Gastroenterol 2005; 39: S138S142.
  • 23
    Katsuta Y, Honma H, Zhang XJ, Ohsuga M, Komeichi H, Shimizu S, et al. Pulmonary blood transit time and impaired arterial oxygenation in patients with chronic liver disease. J Gastroenterol 2005; 40: 5763.
  • 24
    Agusti AG, Roca J, Bosch J, Garcia-Pagan JC, Wagner PD, Rodriguez-Roisin R. Effects of propranolol on arterial oxygenation and oxygen transport to tissues in patients with cirrhosis. Am Rev Respir Dis 1990; 142: 306310.
  • 25
    Moller S, Henriksen JH, Bendtsen F. Central and noncentral blood volumes in cirrhosis: relationship to anthropometrics and gender. Am J Physiol Gastrointest Liver Physiol 2003; 284: G970G979.
  • 26
    Shapiro MD, Nicholls KM, Groves BM, Kluge R, Chung HM, Bichet DG, et al. Interrelationship between cardiac output and vascular resistance as determinants of effective arterial blood volume in cirrhotic patients. Kidney Int 1985; 28: 206211.
  • 27
    Schrier RW, Arroyo V, Bernardi M, Epstein M, Henriksen JH, Rodes J. Peripheral arterial vasodilation hypothesis: a proposal for the initiation of renal sodium and water retention in cirrhosis. Hepatology 1988; 8: 11511157.
  • 28
    Cohn JN. Renal hemodynamic alterations in liver disease. Perspect Nephrol Hypertens 1976; 3: 255234.
  • 29
    Ruiz-del-Arbol L, Monescillo A, Arocena C, Valer P, Gines P, Moreira V, et al. Circulatory function and hepatorenal syndrome in cirrhosis. Hepatology 2005; 42: 439447.
  • 30
    Ma Z, Lee SS. Cirrhotic cardiomyopathy: getting to the heart of the matter. Hepatology 1996; 24: 451459.
  • 31
    Cohn JN, Tristani FE, Khatri IM. Systemic vasoconstrictor and renal vasodilator effects of PLV-2 (octapressin) in man. Circulation 1968; 38: 151157.
  • 32
    Lenz K, Hortnagl H, Druml W, Grimm G, Laggner A, Schneeweisz B, et al. Beneficial effect of 8-ornithin vasopressin on renal dysfunction in decompensated cirrhosis. Gut 1989; 30: 9096.
  • 33
    Blei AT. Monitoring cerebral blood flow: a useful clinical tool in acute liver failure? Liver Transpl 2005; 11: 15811589.
  • 34
    Guevara M, Bru C, Gines P, Fernandez-Esparrach G, Sort P, Bataller R, et al. Increased cerebrovascular resistance in cirrhotic patients with ascites. Hepatology 1998; 28: 3944.
  • 35
    Vaquero J, Chung C, Blei AT. Cerebral blood flow in acute liver failure: a finding in search of a mechanism. Metab Brain Dis 2004; 19: 177194.
  • 36
    Colombato LA, Albillos A, Groszmann RJ. Temporal relationship of peripheral vasodilatation, plasma volume expansion and the hyperdynamic circulatory state in portal-hypertensive rats. Hepatology 1992; 15: 323328.
  • 37
    Sikuler E, Groszmann, R.J. Interaction of flow and resistance in maintenance of portal hypertension in a rat model. Am J Physiol 1986; 250: G205G212.
  • 38
    Colombato LA, Albillos A, Groszmann R. The role of central blood volume in the development of sodium retention in portal hypertensive rats. Gastroenterology 1996; 110: 193198.
  • 39
    Ros J, Claria J, To-Figueras J, Planaguma A, Cejudo-Martin P, Fernandez-Varo G, et al. Endogenous cannabinoids: a new system involved in the homeostasis of arterial pressure in experimental cirrhosis in the rat. Gastroenterology 2002; 122: 8593.
  • 40
    Wiest R, Das S, Cadelina G, Garcia-Tsao G, Milstien S, Groszmann RJ. Bacterial translocation in cirrhotic rats stimulates eNOS-derived NO production and impairs mesenteric vascular contractility. J Clin Invest 1999; 104: 12231233.
  • 41
    Bao L, Lichuan L, Liping T, Junlan Z, Yiqun L, Fallon MB. ET-1 and TNF-a in HPS: analysis in prehepatic portal hypertension and biliary and nonbiliary cirrhosis in rats. Am J Physiol Gastrointest Liver Physiol 2004; 286: G294G303
  • 42
    Morales-Ruiz M, Jimenez W, Perez-Sala D, Ros J, Leivas A, Lamas S, et al. Increased nitric oxide synthase expression in arterial vessels of cirrhotic rats with ascites. Hepatology 1996; 24: 14811486.
  • 43
    Wiest R, Shah V, Sessa WC, Groszmann RJ. NO overproduction by eNOS precedes hyperdynamic splanchnic circulation in portal hypertensive rats. Am J Physiol 1999; 276: G1043G1051.
  • 44
    Martin PY, Xu DL, Niederberger M, Weigert A, Tsai P, St John J, et al. Upregulation of endothelial constitutive NOS: a major role in the increased NO production in cirrhotic rats. Am J Physiol 1996; 270: F494499.
  • 45
    Cahill PA, Redmond EM, Hodges R, Zhang S, Sitzmann JV. Increased endothelial nitric oxide synthase activity in the hyperemic vessels of portal hypertensive rats. J Hepatol 1996; 25: 370378.
  • 46
    Hori N, Wiest R, Groszmann RJ. Enhanced release of nitric oxide in response to changes in flow and shear stress in the superior mesenteric arteries of portal hypertensive rats. Hepatology 1998; 28: 14671473.
  • 47
    Ignarro LJ, Byrns RE, Wood KS. Endothelium-dependent modulation of cGMP levels and intrinsic smooth muscle tone in isolated bovine intrapulmonary artery and vein. Circ Res 1987; 60: 8292.
  • 48
    Furchgott RF, Zawadzki JV. The obligatory role of endothelial cells in the relaxation of arterial smooth muscle by acetylcholine. Nature 1980; 288: 373376.
  • 49
    Bredt DS, Hwang PM, Snyder SH. Localization of nitric oxide synthase indicating a neural role for nitric oxide. Nature 1990; 347: 768770.
  • 50
    Bredt DS, Snyder SH. Isolation of nitric oxide synthetase, a calmodulin-requiring enzyme. Proc Natl Acad Sci U S A 1990; 87: 682685.
  • 51
    Xie QW, Cho HJ, Calaycay J, Mumford RA, Swiderek KM, Lee TD, et al. Cloning and characterization of inducible nitric oxide synthase from mouse macrophages. Science 1992; 256: 225228.
  • 52
    Niederberger M, Gines P, Martin PY, Tsai P, Morris K, McMurtry I, et al. Comparison of vascular nitric oxide production and systemic hemodynamics in cirrhosis versus prehepatic portal hypertension in rats. Hepatology 1996; 24: 947951.
  • 53
    Jurzik L, Froh M, Straub RH, Scholmerich J, Wiest R. Up-regulation of nNOS and associated increase in nitrergic vasodilation in superior mesenteric arteries in pre-hepatic portal hypertension. J Hepatol 2005; 43: 258265.
  • 54
    Kwon S, Iwakiri Y, Cadelina G, Groszmann RJ. Neuronal nitric oxide synthase plays a role in the vasodilation observed in the splanchnic circulation in chronic portal hypertensive rats. Hepatology 2004; 40: 184A.
  • 55
    Xu L, Carter EP, Ohara M, Martin PY, Rogachev B, Morris K, et al. Neuronal nitric oxide synthase and systemic vasodilation in rats with cirrhosis. Am J Physiol Renal Physiol 2000; 279: F1110F1115.
  • 56
    MacMicking J, Xie QW, Nathan C. Nitric oxide and macrophage function. Annu Rev Immunol 1997; 15: 323350.
  • 57
    Cahill PA, Foster C, Redmond EM, Gingalewski C, Wu Y, Sitzmann JV. Enhanced nitric oxide synthase activity in portal hypertensive rabbits. Hepatology 1995; 22: 598606.
  • 58
    Tazi KA, Moreau R, Herve P, Dauvergne A, Cazals-Hatem D, Bert F, et al. Norfloxacin reduces aortic NO synthases and proinflammatory cytokine up-regulation in cirrhotic rats: role of Akt signaling. Gastroenterology 2005; 129: 303314.
  • 59
    Moreau R, Barriere E, Tazi KA, Lardeux B, Dargere D, Urbanowicz W, et al. Terlipressin inhibits in vivo aortic iNOS expression induced by lipopolysaccharide in rats with biliary cirrhosis. Hepatology 2002; 36: 10701078.
  • 60
    Sessa WC. eNOS at a glance. J Cell Sci 2004; 117: 24272429.
  • 61
    Wiest R, Cadelina G, Milstien S, McCuskey RS, Garcia-Tsao G, Groszmann RJ. Bacterial translocation up-regulates GTP-cyclohydrolase I in mesenteric vasculature of cirrhotic rats. Hepatology 2003; 38: 15081515.
  • 62
    Shah V, Wiest R, Garcia-Cardena G, Cadelina G, Groszmann RJ, Sessa WC. Hsp90 regulation of endothelial nitric oxide synthase contributes to vascular control in portal hypertension. Am J Physiol 1999; 277: G463G468.
  • 63
    Iwakiri Y, Tsai MH, McCabe TJ, Gratton JP, Fulton D, Groszmann RJ, et al. Phosphorylation of eNOS initiates excessive NO production in early phases of portal hypertension. Am J Physiol Heart Circ Physiol 2002; 282: H2084H2090.
  • 64
    Dimmeler S, Fleming I, Fisslthaler B, Hermann C, Busse R, Zeiher AM. Activation of nitric oxide synthase in endothelial cells by Akt-dependent phosphorylation. Nature 1999; 399: 601605.
  • 65
    Fulton D, Gratton JP, McCabe TJ, Fontana J, Fujio Y, Walsh K, et al. Regulation of endothelium-derived nitric oxide production by the protein kinase Akt. Nature 1999; 399: 597601.
  • 66
    Michell BJ, Griffiths JE, Mitchelhill KI, Rodriguez-Crespo I, Tiganis T, Bozinovski S, et al. The Akt kinase signals directly to endothelial nitric oxide synthase. Curr Biol 1999; 9: 845848.
  • 67
    Gallis B, Corthals GL, Goodlett DR, Ueba H, Kim F, Presnell SR, et al. Identification of flow-dependent endothelial nitric-oxide synthase phosphorylation sites by mass spectrometry and regulation of phosphorylation and nitric oxide production by the phosphatidylinositol 3-kinase inhibitor LY294002. J Biol Chem 1999; 274: 3010130108.
  • 68
    Abraldes J, Iwakiri, Y, Loureiro-Silva M., Haq O, Groszmann RJ. Vascular endothelial growth factor (VEGF) up-regulates endothelial nitric oxide synthase (eNOS) in the intestinal microcirculatory bed leading to the hyperdynamic circulatory syndrome in mild portal hypertension [Abstract]. Gastroenterology 2005; 128: A687.
  • 69
    Fernandez M, Mejias M, Angermayr B, Garcia-Pagan JC, Rodes J, Bosch J. Inhibition of VEGF receptor-2 decreases the development of hyperdynamic splanchnic circulation and portal-systemic collateral vessels in portal hypertensive rats. J Hepatol 2005; 43: 98103.
  • 70
    Fallon MB, Abrams GA, Luo B, Hou Z, Dai J, Ku DD. The role of endothelial nitric oxide synthase in the pathogenesis of a rat model of hepatopulmonary syndrome. Gastroenterology 1997; 113: 606614.
  • 71
    Morita T, Perrella MA, Lee ME, Kourembanas S. Smooth muscle cell-derived carbon monoxide is a regulator of vascular cGMP. Proc Natl Acad Sci U S A 1995; 92: 14751479.
  • 72
    Morita T, Kourembanas S. Endothelial cell expression of vasoconstrictors and growth factors is regulated by smooth muscle cell-derived carbon monoxide. J Clin Invest 1995; 96: 26762682.
  • 73
    Cook MN, Nakatsu K, Marks GS, McLaughlin BE, Vreman HJ, Stevenson DK, et al. Heme oxygenase activity in the adult rat aorta and liver as measured by carbon monoxide formation. Can J Physiol Pharmacol 1995; 73: 515518.
  • 74
    Wang R, Wu L, Wang Z. The direct effect of carbon monoxide on Kca channels in vascular smooth muscle cells. Pflugers Arch Eur J Physiol 1997; 434: 285291.
  • 75
    Jaggar JH, Leffler CW, Cheranov SY, Tcheranova D, Shuyu E, Cheng X. Carbon monoxide dilates cerebral arterioles by enhancing the coupling of Ca2+ sparkes to Ca2+ activated K+ channels. Circ Res 2002; 91: 610617.
  • 76
    Maines MD, Trakshel GM, Kutty RK. Characterization of two constitutive forms of rat liver microsomal heme oxygenase: only one molecular species of the enzyme is inducible. J Biol Chem 1986; 261: 411419.
  • 77
    Chen YC, Gines P, Yang J, Summer SN, Falk S, Russell NS, et al. Increased vascular heme oxygenase-1 expression contributes to arterial vasodilation in experimental cirrhosis in rats. Hepatology 2004; 39: 10751087.
  • 78
    Arguedas MR, Abrams GA, Krowka MJ, Fallon MB. Prospective evaluation of outcomes and predictors of mortality in patients with hepatopulmonary syndrome undergoing liver transplantation. Hepatology 2003; 37: 192197.
  • 79
    Zhang J, Ling Y, Luo B, Tang L, Ryter SW, Stockard CR, et al. Analysis of pulmonary heme oxygenase-1 and nitric oxide synthase alterations in experimental hepatopulmonary syndrome. Gastroenterology 2003; 125: 14411451.
  • 80
    De las Heras D, Fernandez J, Gines P, Cardenas A, Ortega R, Navasa M, et al. Increased carbon monoxide production in patients with cirrhosis with and without spontaneous bacterial peritonitis. Hepatology 2003; 38: 452459.
  • 81
    Stevenson DK, Vreman HJ. Carbon monoxide and bilirubin production in neonates. Pediatrics 1997; 100: 252254.
  • 82
    Larsen FS, Gottstein J, Blei AT. Cerebral hyperemia and nitric oxide synthase in rats with ammonia-induced brain edema. J Hepatol 2001; 34: 548554.
  • 83
    Blei AT. The pathophysiology of brain edema in acute liver failure. Neurochem Int 2005; 47: 7177.
  • 84
    Claesson HE, Lindgren JA, Hammarstrom S. Elevation of adenosine 3′,5′-monophosphate levels in 3T3 fibroblasts by arachidonic acid: evidence for mediation by prostaglandin I2. FEBS Lett 1977; 81: 415418.
  • 85
    Ohta M, Kishihara F, Hashizume M, Kawanaka H, Tomikawa M, Higashi H, et al. Increased prostacyclin content in gastric mucosa of cirrhotic patients with portal hypertensive gastropathy. Prostaglandins Leukot Essent Fatty Acids 1995; 53: 4145.
  • 86
    Sitzmann JV, Campbell K, Wu Y, St Clair C. Prostacyclin production in acute, chronic, and long-term experimental portal hypertension. Surgery 1994; 115: 290294.
  • 87
    Munoz J, Albillos A, Perez-Paramo M, Rossi I, Alvarez-Mon M. Factors mediating the hemodynamic effects of tumor necrosis factor-alpha in portal hypertensive rats. Am J Physiol 1999; 276: G687G693.
  • 88
    Hutcheson IR, Chaytor AT, Evans WH, Griffith TM. Nitric oxide-independent relaxations to acetylcholine and A23187 involve different routes of heterocellular communication: role of Gap junctions and phospholipase A2. Circ Res 1999; 84: 5363.
  • 89
    You J, Marrelli SP, Bryan RM Jr. Role of cytoplasmic phospholipase A2 in endothelium-derived hyperpolarizing factor dilations of rat middle cerebral arteries. J Cereb Blood Flow Metab 2002; 22: 12391247.
  • 90
    Adeagbo AS, Henzel MK. Calcium-dependent phospholipase A2 mediates the production of endothelium-derived hyperpolarizing factor in perfused rat mesenteric prearteriolar bed. J Vasc Res 1998; 35: 2735.
  • 91
    Fulton D, McGiff JC, Quilley J. Role of phospholipase C and phospholipase A2 in the nitric oxide-independent vasodilator effect of bradykinin in the rat perfused heart. J Pharmacol Exp Ther 1996; 278: 518526.
  • 92
    Edwards G, Dora KA, Gardener MJ, Garland CJ, Weston AH. K+ is an endothelium-derived hyperpolarizing factor in rat arteries. Nature 1998; 396: 269272.
  • 93
    Sandow SL, Hill CE. Incidence of myoendothelial gap junctions in the proximal and distal mesenteric arteries of the rat is suggestive of a role in endothelium-derived hyperpolarizing factor-mediated responses. Circ Res 2000; 86: 341346.
  • 94
    Emerson GG, Segal SS. Electrical activation of endothelium evokes vasodilation and hyperpolarization along hamster feed arteries. Am J Physiol Heart Circ Physiol 2001; 280: H160H167.
  • 95
    Chaytor AT, Martin PE, Edwards DH, Griffith TM. Gap junctional communication underpins EDHF-type relaxations evoked by ACh in the rat hepatic artery. Am J Physiol Heart Circ Physiol 2001; 280: H2441H2450.
  • 96
    Miura H, Bosnjak JJ, Ning G, Saito T, Miura M, Gutterman DD. Role for hydrogen peroxide in flow-induced dilation of human coronary arterioles. Circ Res 2003; 92: e31e40.
  • 97
    Matoba T, Shimokawa H, Kubota H, Morikawa K, Fujiki T, Kunihiro I, et al. Hydrogen peroxide is an endothelium-derived hyperpolarizing factor in human mesenteric arteries. Biochem Biophys Res Commun 2002; 290: 909913.
  • 98
    Matoba T, Shimokawa H, Nakashima M, Hirakawa Y, Mukai Y, Hirano K, et al. Hydrogen peroxide is an endothelium-derived hyperpolarizing factor in mice. J Clin Invest 2000; 106: 15211530.
  • 99
    Matoba T, Shimokawa H, Morikawa K, Kubota H, Kunihiro I, Urakami-Harasawa L, et al. Electron spin resonance detection of hydrogen peroxide as an endothelium-derived hyperpolarizing factor in porcine coronary microvessels. Arterioscler Thromb Vasc Biol 2003; 23: 12241230.
  • 100
    Lacza Z, Puskar M, Kis B, Perciaccante JV, Miller AW, Busija DW. Hydrogen peroxide acts as an EDHF in the piglet pial vasculature in response to bradykinin. Am J Physiol Heart Circ Physiol 2002; 283: H406H411.
  • 101
    You J, Johnson TD, Marrelli SP, Bryan RM Jr. Functional heterogeneity of endothelial P2 purinoceptors in the cerebrovascular tree of the rat. Am J Physiol 1999; 277: H893H900.
  • 102
    Tomioka H, Hattori Y, Fukao M, Sato A, Liu M, Sakuma I, et al. Relaxation in different-sized rat blood vessels mediated by endothelium-derived hyperpolarizing factor: importance of processes mediating precontractions. J Vasc Res 1999; 36: 311320.
  • 103
    Urakami-Harasawa L, Shimokawa H, Nakashima M, Egashira K, Takeshita A. Importance of endothelium-derived hyperpolarizing factor in human arteries. J Clin Invest 1997; 100: 27932799.
  • 104
    Shimokawa H, Yasutake H, Fujii K, Owada MK, Nakaike R, Fukumoto Y, et al. The importance of the hyperpolarizing mechanism increases as the vessel size decreases in endothelium-dependent relaxations in rat mesenteric circulation. J Cardiovasc Pharmacol 1996; 28: 703711.
  • 105
    Berman RS, Martin PE, Evans WH, Griffith TM. Relative contributions of NO and gap junctional communication to endothelium-dependent relaxations of rabbit resistance arteries vary with vessel size. Microvasc Res 2002; 63: 115128.
  • 106
    Barriere E, Tazi KA, Rona JP, Pessione F, Heller J, Lebrec D, et al. Evidence for an endothelium-derived hyperpolarizing factor in the superior mesenteric artery from rats with cirrhosis. Hepatology 2000; 32: 935941.
  • 107
    Bauersachs J, Popp R, Hecker M, Sauer E, Fleming I, Busse R. Nitric oxide attenuates the release of endothelium-derived hyperpolarizing factor. Circulation 1996; 94: 33413347.
  • 108
    Wagner JA, Varga K, Ellis EF, Rzigalinski BA, Martin BR, Kunos G. Activation of peripheral CB1 cannabinoid receptors in haemorrhagic shock. Nature 1997; 390: 518521.
  • 109
    Batkai S, Jarai Z, Wagner JA, Goparaju SK, Varga K, Liu J, et al. Endocannabinoids acting at vascular CB1 receptors mediate the vasodilated state in advanced liver cirrhosis. Nat Med 2001; 7: 827832.
  • 110
    Domenicali M, Ros J, Fernandez-Varo G, Cejudo-Martin P, Crespo M, Morales-Ruiz M, et al. Increased anandamide induced relaxation in mesenteric arteries of cirrhotic rats: role of cannabinoid and vanilloid receptors. Gut 2005; 54: 522527.
  • 111
    Deutsch DG, Goligorsky MS, Schmid PC, Krebsbach RJ, Schmid HH, Das SK, et al. Production and physiological actions of anandamide in the vasculature of the rat kidney. J Clin Invest 1997; 100: 15381546.
  • 112
    Bilfinger TV, Salzet M, Fimiani C, Deutsch DG, Tramu G, Stefano GB. Pharmacological evidence for anandamide amidase in human cardiac and vascular tissues. Int J Cardiol 1998; 64( Suppl 1): S15S22.
  • 113
    Chu CJ, Lee FY, Chang FY, Wang SS, Lin HC, Wu SL, et al. Hyperdynamic circulation in prehepatic portal hypertension: role of tumor necrosis factor-alpha. Zhonghua Yi Xue Za Zhi (Taipei) 1997; 59: 145150.
  • 114
    Lopez-Talavera JC, Cadelina G, Olchowski J, Merrill W, Groszmann RJ. Thalidomide inhibits tumor necrosis factor alpha, decreases nitric oxide synthesis, and ameliorates the hyperdynamic circulatory syndrome in portal-hypertensive rats. Hepatology 1996; 23: 16161621.
  • 115
    Kilbourn RG, Belloni P. Endothelial cell production of nitrogen oxides in response to interferon gamma in combination with tumor necrosis factor, interleukin-1, or endotoxin. J Natl Cancer Inst 1990; 82: 772776.
  • 116
    Lopez-Talavera JC, Merrill WW, Groszmann RJ. Tumor necrosis factor alpha: a major contributor to the hyperdynamic circulation in prehepatic portal-hypertensive rats. Gastroenterology 1995; 108: 761767.
  • 117
    Sztrymf B, Rabiller A, Nunes H, Savale L, Lebrec D, Le Pape A, et al. Prevention of hepatopulmonary syndrome and hyperdynamic state by pentoxifylline in cirrhotic rats. Eur Respir J 2004; 23: 752758.
  • 118
    Katusic ZS, Stelter A, Milstien S. Cytokines stimulate GTP cyclohydrolase I gene expression in cultured human umbilical vein endothelial cells. Arterioscler Thromb Vasc Biol 1998; 18: 2732.
  • 119
    Rosenkranz-Weiss P, Sessa WC, Milstien S, Kaufman S, Watson CA, et al. Regulation of nitric oxide synthesis by proinflammatory cytokines in human umbilical vein endothelial cells. Elevations in tetrahydrobiopterin levels enhance endothelial nitric oxide synthase specific activity. J Clin Invest 1994; 93: 22362243.
  • 120
    Wever RM, van Dam T, van Rijn HJ, de Groot F, Rabelink TJ. Tetrahydrobiopterin regulates superoxide and nitric oxide generation by recombinant endothelial nitric oxide synthase. Biochem Biophys Res Commun 1997; 237: 340344.
  • 121
    Fernandez-Rodriguez CM, Prada IR, Prieto J, Montuenga LM, Elssasser T, Quiroga J, et al. Circulating adrenomedullin in cirrhosis: relationship to hyperdynamic circulation. J Hepatol 1998; 29: 250256.
  • 122
    Genesca J, Gonzalez A, Catalan R, Segura R, Martinez M, Esteban R, et al. Adrenomedullin, a vasodilator peptide implicated in hemodynamic alterations of liver cirrhosis: relationship to nitric oxide. Dig Dis Sci 1999; 44: 372376.
  • 123
    Wang P, Ba ZF, Cioffi WG, Bland KI, Chaudry IH. The pivotal role of adrenomedullin in producing hyperdynamic circulation during the early stage of sepsis. Arch Surg 1998; 133: 12981304.
  • 124
    Kojima H, Sakurai S, Uemura M, Satoh H, Nakashima T, Minamino N, et al. Adrenomedullin contributes to vascular hyporeactivity in cirrhotic rats with ascites via a release of nitric oxide. Scand J Gastroenterol 2004; 39: 686693.
  • 125
    Nishimatsu H, Suzuki E, Nagata D, Moriyama N, Satonaka H, Walsh K, et al. Adrenomedullin induces endothelium-dependent vasorelaxation via the phosphatidylinositol 3-kinase/Akt-dependent pathway in rat aorta. Circ Res 2001; 89: 6370.
  • 126
    Hosoki R, Matsuki N, Kimura H. The possible role of hydrogen sulfide as an endogenous smooth muscle relaxant in synergy with nitric oxide. Biochem Biophys Res Commun 1997; 237: 527531.
  • 127
    Zhao W, Wang R. H(2)S-induced vasorelaxation and underlying cellular and molecular mechanisms. Am J Physiol Heart Circ Physiol 2002; 283: H474H480.
  • 128
    Cheng Y, Ndisang JF, Tang G, Cao K, Wang R. Hydrogen sulfide-induced relaxation of resistance mesenteric artery beds of rats. Am J Physiol Heart Circ Physiol 2004; 287: H2316H2323.
  • 129
    Stipanuk MH, Beck PW. Characterization of the enzymic capacity for cysteine desulphhydration in liver and kidney of the rat. Biochem J 1982; 206: 267277.
  • 130
    Zhao W, Zhang J, Lu Y, Wang R. The vasorelaxant effect of H(2)S as a novel endogenous gaseous K(ATP) channel opener. EMBO J 2001; 20: 60086016.