Liver endothelial cells promote LDL-R expression and the uptake of HCV-like particles in primary rat and human hepatocytes

Authors

  • Yaakov Nahmias,

    1. Center for Engineering in Medicine/Department of Surgery, Massachusetts General Hospital, Shriners Burns Hospital, Harvard Medical School, Boston, MA
    Search for more papers by this author
  • Monica Casali,

    1. Center for Engineering in Medicine/Department of Surgery, Massachusetts General Hospital, Shriners Burns Hospital, Harvard Medical School, Boston, MA
    Search for more papers by this author
  • Laurent Barbe,

    1. Center for Engineering in Medicine/Department of Surgery, Massachusetts General Hospital, Shriners Burns Hospital, Harvard Medical School, Boston, MA
    Search for more papers by this author
  • Francois Berthiaume,

    1. Center for Engineering in Medicine/Department of Surgery, Massachusetts General Hospital, Shriners Burns Hospital, Harvard Medical School, Boston, MA
    Search for more papers by this author
  • Martin L. Yarmush

    Corresponding author
    1. Center for Engineering in Medicine/Department of Surgery, Massachusetts General Hospital, Shriners Burns Hospital, Harvard Medical School, Boston, MA
    • Center for Engineering in Medicine/Department of Surgery, Massachusetts General Hospital, Shriners Burns Hospital, Harvard Medical School, 51 Blossom Street, Boston, MA 02114
    Search for more papers by this author
    • fax: 617-371-4950


  • Potential conflict of interest: Nothing to report.

Abstract

Low-density lipoprotein (LDL) is an important carrier of plasma cholesterol and triglycerides whose concentration is regulated by the liver parenchymal cells. Abnormal LDL regulation is thought to cause atherosclerosis, while viral binding to LDL has been suggested to facilitate hepatitis C infection. Primary hepatocytes quickly lose the ability to clear LDL during in vitro culture. Here we show that the coculture of hepatocytes with liver sinusoidal endothelial cells (LSEC) significantly increases the ability of hepatocytes to uptake LDL in vitro. LDL uptake does not increase when hepatocytes are cocultured with other cell types such as fibroblasts or umbilical vein endothelial cells. We find that LSECs induce the hepatic expression of the LDL receptor and the epidermal growth factor receptor. In addition, while hepatocytes in single culture did not take up hepatitis C virus (HCV)-like particles, the hepatocytes cocultured with LSECs showed a high level of HCV-like particle uptake. We suggest that coculture with LSECs induces the emergence of a sinusoidal surface in primary hepatocytes conducive to the uptake of HCV-like particles. In conclusion, our findings describe a novel model of polarized hepatocytes in vitro that can be used for the study of LDL metabolism and hepatitis C infection. (HEPATOLOGY 2006;43:257–265.)

Ancillary