SEARCH

SEARCH BY CITATION

References

  • 1
    Sugimachi K, Tanaka S, Terashi T, Taguchi KI, Rikimaru T, Sugimachi K. The mechanisms of angiogenesis in hepatocellular carcinoma: angiogenic switch during tumor progression. Surgery 2002; 131: S135S141.
  • 2
    Folkman J. Tumor angiogenesis: therapeutic implications. N Engl J Med 1971; 285: 11821186.
  • 3
    Folkman J, Klagsbrun M. Angiogenic factors. Science 1987; 235: 442447.
  • 4
    Folkman J, Weisz PB, Joullie MM, Li WW, Ewing WR. Control of angiogenesis with synthetic heparin substitutes. Science 1989; 243: 14901493.
  • 5
    Scappaticci FA. Mechanisms and future directions for angiogenesis-based cancer therapies. J Clin Oncol 2002; 20: 39063927.
  • 6
    McLean JW, Tomlinson JE, Kuang WJ, Eaton DL, Chen EY, Fless GM, et al. cDNA sequence of human apolipoprotein (a) is homologous to plasminogen. Nature 1987: 330; 132137.
  • 7
    Guevara J Jr, Knapp RD, Honda S, Northup SR, Morrisett JD. A structural assessment of the apo[a] protein of human lipoprotein[a]. Proteins 1992; 12: 188199.
  • 8
    Schulter V, Koolwijk P, Peters E, Frank S, Hrzenjak A, Graier WF, van Hinsbergh VW, et al. Impact of apolipoprotein(a) on in vitro angiogenesis. Arterioscler Thromb Vasc Biol 2001; 21: 433438.
  • 9
    Trieu VN, Uckun FM. Apolipoprotein(a), a link between atherosclerosis and tumor angiogenesis. Biochem Biophys Res Commun 1999; 257: 714718.
  • 10
    Kim JS, Chang JH, Yu HK, Ahn JH, Yum JS, Lee SK, et al. Inhibition of angiogenesis and angiogenesis-dependent tumor growth by the cryptic kringle fragments of human apolipoprotein(a). J Biol Chem 2003; 278: 2900029008.
  • 11
    Yu HK, Kim JS, Lee HJ, Ahn JH, Lee SK, Hong SW, et al. Suppression of colorectal cancer liver metastasis and extension of survival by expression of apolipoprotein(a) kringles. Cancer Res 2004; 64: 70927098.
  • 12
    Yu HK, Ahn JH, Lee HJ, Lee SK, Hong SW, Yoon Y, et al. Expression of human apolipoprotein(a) kringles in colon cancer cells suppresses angiogenesis-dependent tumor growth and peritoneal dissemination. J Gene Med 2004; 7: 3949.
  • 13
    Kim JS, Yu HK, Ahn JH, Lee HJ, Hong SW, Jung KH, et al. Human apolipoprotein(a) kringle V inhibits angiogenesis in vitro and in vivo by interfering with the activation of focal adhesion kinases. Biochem Biophys Res Commun 2004; 313: 534540.
  • 14
    Eder JP, Supko JG, Clark JW, Puchalski TA, Garcia-Carbonero R, Ryan DP, et al. Phase I clinical trial of recombinant human endostatin administered as a short intravenous infusion repeated daily. J Clin Oncol 2002; 20: 37723784.
  • 15
    Herbst RS, Hess KR, Tran HT, Tseng JE, Mullani NA, Charnsangavej C, et al. Phase I study of recombinant human endostatin in patients with advanced solid tumors. J Clin Oncol 2002; 20: 37923803.
  • 16
    Thomas JP, Arzoomanian RZ, Alberti D, Marnocha R, Lee F, Friedl A, et al. Phase I pharmacokinetic and pharmacodynamic study of recombinant human endostatin in patients with advanced solid tumors. J Clin Oncol 2003; 21: 223231.
  • 17
    Beerepoot LV, Witteveen EO, Groenewegen G, Fogler WE, Sim BK, Sidor C, et al. Recombinant human angiostatin by twice-daily subcutaneous injection in advanced cancer: a pharmacokinetic and long-term safety study. Clin Cancer Res 2003; 9: 40254033.
  • 18
    Ponnazhagan S. Parvovirus vectors for cancer gene therapy. Expert Opin Biol Ther 2004; 4: 5364.
  • 19
    Snyder O, Xiao X, Samulski RJ. Production of recombinant adeno-associated viral vectors. In: DracopoliNC, et al., eds. Current Protocols in Human Genetics. New York: John Wiley & Sons, 1996:Unit 12.1.
  • 20
    Grimm D. Production methods for gene transfer vectors based on adeno-associated virus serotypes. Methods 2002; 28: 146157.
  • 21
    Park JY, Lim BP, Lee K, Kim YG, Jo EC. Scalable production of adeno-associated virus type 2 vectors via suspension transfection. Biotechnol Bioeng 2006. In press.
  • 22
    Zolotukhin S, Byrne BJ, Mason E, Zolotukhin I, Potter M, Chesnut K, et al. Recombinant adeno-associated virus purification using novel methods improves infectious titer and yield. Gene Ther 1999; 6: 973985.
  • 23
    Salvetti A, Orève S, Chadeuf G, Favre D, Cherel Y, Champion-Arnaud P, et al. Factors influencing recombinant adeno-associated virus production. Hum Gene Ther 1998; 9: 695706.
  • 24
    Ma HI, Lin SZ, Chiang YH, Li J, Chen SL, Tsao YP, et al. Intratumoral gene therapy of malignant brain tumor in a rat model with angiostatin delivered by adeno-associated viral (AAV) vector. Gene Ther 2002; 9: 211.
  • 25
    Ohlfest JR, Demorest ZL, Motooka Y, Vengco I, Oh S, Chen E, et al. Combinatorial antiangiogenic gene therapy by nonviral gene transfer using the sleeping beauty transposon causes tumor regression and improves survival in mice bearing intracranial human glioblastoma. Mol Ther 2005; 12: 778788.
  • 26
    Jain RK. Normalization of tumor vasculature: an emerging concept in antiangiogenic therapy. Science 2005; 307: 5862.
  • 27
    Isayeva T, Kumar S, Ponnazhagan S. Anti-angiogenic gene therapy for cancer. Intl J Oncol 2004; 25: 335343.
  • 28
    Sun HC, Tang ZY. Angiogenesis in hepatocellular carcinoma: the retrospectives and perspectives. J Cancer Res Clin Oncol 2004; 130: 307319.
  • 29
    Hurwitz H, Fehrenbacher L, Novotny W, Cartwright T, Hainsworth J, Heim W, et al. Bevacizumab plus irinotecan, fluorouracil, and leucovorin for metastatic colorectal cancer. N Engl J Med 2004; 350: 23352342.
  • 30
    Willett CG, Boucher Y, di Tomaso E, Duda DG, Munn LL, Tong RT, et al. Direct evidence that VEGF-specific antibody bevacizumab has antivascular effects in human rectal cancer. Nat Med 2004; 10: 145147.
  • 31
    Ahn JH, Kim JS, Yu HK, Lee HJ, Yoon Y. A truncated kringle domain of human apolipoprotein(a) inhibits the activation of extracellular signal-regulated kinase 1 and 2 through a tyrosine phosphatase-dependent pathway. J Biol Chem 2004; 279: 2180821814.
  • 32
    Cao Y, Chen A, An SSA, Ji RW, Davidson D, Cao Y, et al. Kringle 5 of plasminogen is a novel inhibitor of endothelial cells growth. J Biol Chem 1997; 272: 2292422928.
  • 33
    Ponnazhagan S, Mahendra G, Kumar S, Shaw DR, Stockard CR, Grizzle WE, et al. Adeno-associated virus 2-mediated antiangiogenic cancer gene therapy: long-term efficacy of a vector encoding angiostatin and endostatin over vectors encoding a single factor. Cancer Res 2004; 64: 17811787.
  • 34
    Scappaticci FA, Smith R, Pathak A, Schloss D, Lum B, Cao Y, et al. Combination angiostatin and endostatin gene transfer induces synergistic antiangiogenic activity in vitro and antitumor efficacy in leukemia and solid tumors in mice. Mol Ther 2001; 3: 186196.
  • 35
    Ma HI, Guo P, Li J, Lin SZ, Chiang YH, Xiao X, et al. Suppression of intracranial human glioma growth after intramuscular administration of an adeno-associated viral vector expressing angiostatin. Cancer Res 2002; 62: 756763.
  • 36
    Li C, Bowles DE, van Dyke T, Samulski RJ. Adeno-associated virus vectors: potential applications for cancer gene therapy. Cancer Gene Ther 2005; 12: 913915.
  • 37
    Perri SR, Nalbantoglu J, Annabi B, Koty Z, Lejeune L, François M, et al. Plasminogen kringle 5-engineered glioma cells block migration of tumor-associated macrophages and suppress tumor vascularization and progression. Cancer Res 2005; 65: 83598365.
  • 38
    Cao Y, Ji RW, Davidson D, Schaller J, Marti D, Sohndel S, et al. Kringle domains of human angiostatin: characterization of the anti-proliferative activity on endothelial cells. J Biol Chem 1996; 271: 2946129467.
  • 39
    Ji RW, Castellino FJ, Chang Y, Deford ME, Gray H, Villarreal X, et al. Characterization of kringle domains of angiostatin as antagonist of endothelial cell migration, an important process in angiogenesis. FASEB J 1998; 12: 17311738.
  • 40
    Ji RW, Barrientos LG, Llinás M, Gray H, Villarreal X, DeFord ME, et al. Selective inhibition by kringle 5 of human plasminogen on endothelial cell migration, an important process in angiogenesis. Biochem Biophys Res Commun 1998; 247: 414417.
  • 41
    Cao R, Wu HL, Veitonmaki N, Linden P, Farnebo J, Shi GY, et al. Suppression of angiogenesis and tumor growth by the inhibitor K1–5 generated by plasmin-mediated proteolysis. Proc Natl Acad Sci U S A 1999; 96: 57285733.