SEARCH

SEARCH BY CITATION

Abstract

Compounds with in vitro anti-hepatitis C virus (HCV) activity are often advanced directly into clinical trials with limited or no in vivo efficacy data. This limits prediction of clinical efficacy of compounds in the HCV drug pipeline, and may expose human subjects to unnecessary treatment effects. The scid-Alb-uPA mouse supports proliferation of transplanted human hepatocytes and subsequent HCV infection. Cohorts of genotype 1a HCV-infected mice were treated with interferon α-2b(IFN-α), BILN-2061 (anti-NS3 protease), or HCV371 (anti-NS5B polymerase). Mice treated with 1350IU/g/day IFN-α intramuscularly for 10 to 28 days demonstrated reduced viral titers compared with controls in all five experiments (P < .05, t test); viral titers rebounded after treatment withdrawal. A more pronounced antiviral effect with IFN-α was seen in genotype 3a–infected mice. Pilot studies with BILN2061 confirmed exposure to 10X replicon EC50 at trough and reduced viral titer over 2 log at 4 days. In a second 7-day study, mean HCV RNA titers dropped 1.1 log in BILN2061-treated animals, 0.6 log in IFN-treated mice, and rose 0.2 log in controls (P = .013, ANOVA). Pre-existing mutants with partial resistance to BILN2061 were identified by sequencing both the human inoculum and sera from treated mice. The polymerase inhibitor HCV371 yielded a decline in HCV titers of 0.3 log relative to vehicle-treated controls (P = NS). Performance of all three antiviral regimens in the chimeric mouse model paralleled responses in humans. In conclusion, this system may help selection of lead compounds for advancement into human trials with an increased likelihood of clinical success while broadening the tools available for study of the biology of HCV infection. (HEPATOLOGY 2006;43:1346–1353.)