The constitutive androstane receptor (CAR) modulates xeno- and endobiotic hepatotoxicity by regulating detoxification pathways. Whether activation of CAR may also protect against liver injury by directly blocking apoptosis is unknown. To address this question, CAR wild-type (CAR+/+) and CAR knockout (CAR−/−) mice were treated with the CAR agonist 1,4-bis[2-(3,5-dichloropyridyloxy)] benzene (TCPOBOP) and then with the Fas agonist Jo2 or with concanavalin A (ConA). Following the administration of Jo2, hepatocyte apoptosis, liver injury, and animal fatalities were abated in TCPOBOP-treated CAR+/+ but not in CAR−/− mice. Likewise, acute and chronic ConA-mediated liver injury and fibrosis were also reduced in wild-type versus CAR−/− TCPOBOP-treated mice. The proapoptotic proteins Bak (Bcl-2 antagonistic killer) and Bax (Bcl-2-associated X protein) were depleted in livers from TCPOBOP-treated CAR+/+ mice. In contrast, mRNA expression of the antiapoptotic effector myeloid cell leukemia factor-1 (Mcl-1) was increased fourfold. Mcl-1 promoter activity was increased by transfection with CAR and administration of TCPOBOP in hepatoma cells, consistent with a direct CAR effect on Mcl-1 transcription. Indeed, site-directed mutagenesis of a putative CAR consensus binding sequence on the Mcl-1 promoter decreased Mcl-1 promoter activity. Mcl-1 transgenic animals demonstrated little to no acute liver injury after administration of Jo2, signifying Mcl-1 cytoprotection. In conclusion, these observations support a prominent role for CAR cytoprotection against Fas-mediated hepatocyte injury via a mechanism involving upregulation of Mcl-1 and, likely, downregulation of Bax and Bak. (HEPATOLOGY 2006;44:252–262.)