• 1
    Chen MC, Mullane MR, Lad TE. Serum cholesterol level and hepatoma. JAMA 1990; 264: 20712072.
  • 2
    Hwang SJ, Lee SD, Chang CF, Wu JC, Tsay SH, Lui WY, et al. Hypercholesterolaemia in patients with hepatocellular carcinoma. J Gastroenterol Hepatol 1992; 7: 491496.
  • 3
    Ndububa DA, Ojo OS, Adetiloye VA, Rotimi O, Durosinmi MA, Uchegbu LO. The incidence and characteristics of some paraneoplastic syndromes of hepatocellular carcinoma in Nigerian patients. Eur J Gastroenterol Hepatol 1999; 11: 14011404.
  • 4
    Luo JC, Hwang SJ, Wu JC, Lai CR, Li CP, Chang FY, et al. Clinical characteristics and prognosis of hepatocellular carcinoma patients with paraneoplastic syndromes. Hepatogastroenterology 2002; 49: 13151319.
  • 5
    Narayan KA, Morris HP. Serum lipoproteins of rats bearing transplanted Morris hepatoma 7777. Int J Cancer 1970; 5: 410414.
  • 6
    Bricker LA, Morris HP, Siperstein MD. Loss of the cholesterol feedback system in the intact hepatoma-bearing rat. J Clin Invest 1972; 51: 206215.
  • 7
    Dnistrian AM, Barclay M, Terebus-Kekish O, Archibald FM, Morris HP. Serum lipoproteins in rats bearing Morris hepatomas of different degrees of differentiation. Cancer Biochem Biophys 1979; 3: 8184.
  • 8
    Grigor MR, Blank ML, Snyder F. Cholesterol metabolism in rats bearing Morris hepatoma 7777. Cancer Res 1973; 33: 18701874.
  • 9
    Siperstein MD, Fagan VM. Deletion of the cholesterol-negative feedback system in liver tumors. Cancer Res 1964; 24: 11081115.
  • 10
    Mitchell AD, Pugh TD, Goldfarb S. Partial “feedback control” of β-hydroxy-β-methylglutaryl coenzyme A reductase activity in primary hepatocellular carcinomas. Cancer Res 1978; 38: 44744477.
  • 11
    George R, Goldfarb S. Inhibition of 3-hydroxy-3-methylglutaryl coenzyme A reductase activity in Morris hepatoma 7800 after intravenous injection of mevalonic acid. Cancer Res 1980; 40: 47174721.
  • 12
    Barnard GF, Erickson SK, Cooper AD. Lipoprotein metabolism by rat hepatomas. Studies on the etiology of defective dietary feedback inhibition of cholesterol synthesis. J Clin Invest 1984; 74: 173184.
  • 13
    Danilewitz MD, Herrera GA, Kew MC, Mendelsohn D, Barnes S, Alexander CB, et al. Autonomous cholesterol biosynthesis in murine hepatoma. A receptor defect with normal coated pits. Cancer 1984; 54: 15621568.
  • 14
    Barnard GF, Erickson SK, Cooper AD. Regulation of lipoprotein receptors on rat hepatomas in vivo. Biochim Biophys Acta 1986; 879: 301312.
  • 15
    Brown MS, Goldstein JL. The SREBP pathway: regulation of cholesterol metabolism by proteolysis of a membrane-bound transcription factor. Cell 1997; 89: 331340.
  • 16
    Lu TT, Repa JJ, Mangelsdorf DJ. Orphan nuclear receptors as eLiXiRs and FiXeRs of sterol metabolism. J Biol Chem 2001; 276: 3773537738.
  • 17
    Honda A, Salen G, Matsuzaki Y, Batta AK, Xu G, Leitersdorf E, et al. Differences in hepatic levels of intermediates in bile acid biosynthesis between Cyp27−/− mice and CTX. J Lipid Res 2001; 42: 291300.
  • 18
    Honda A, Salen G, Matsuzaki Y, Batta AK, Xu G, Hirayama T, et al. Disrupted coordinate regulation of farnesoid X receptor target genes in a patient with cerebrotendinous xanthomatosis. J Lipid Res 2005; 46: 287296.
  • 19
    Repa JJ, Lund EG, Horton JD, Leitersdorf E, Russell DW, Dietschy JM, et al. Disruption of the sterol 27-hydroxylase gene in mice results in hepatomegaly and hypertriglyceridemia. J Biol Chem 2000; 275: 3968539692.
  • 20
    Honda A, Yoshida T, Tanaka N, Matsuzaki Y, He B, Shoda J, et al. Increased bile acid concentration in liver tissue with cholesterol gallstone disease. J Gastroenterol 1995; 30: 6166.
  • 21
    Bradford MM. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 1976; 72: 248254.
  • 22
    Nguyen LB, Shefer S, Salen G, Ness GC, Tint GS, Zaki FG, et al. A molecular defect in hepatic cholesterol biosynthesis in sitosterolemia with xanthomatosis. J Clin Invest 1990; 86: 923931.
  • 23
    Honda A, Salen G, Shefer S, Batta AK, Honda M, Xu G, et al. Bile acid synthesis in the Smith-Lemli-Opitz syndrome: effects of dehydrocholesterols on cholesterol 7α-hydroxylase and 27-hydroxylase activities in rat liver. J Lipid Res 1999; 40: 15201528.
  • 24
    Greim H, Trülzsch D, Roboz J, Dressler K, Czygan P, Hutterer F, et al. Mechanism of cholestasis. 5. Bile acids in normal rat livers and in those after bile duct ligation. Gastroenterology 1972; 63: 837845.
  • 25
    Tsuji N, Kamagata C, Furuya M, Kobayashi D, Yagihashi A, Morita T, et al. Selection of an internal control gene for quantitation of mRNA in colonic tissues. Anticancer Res 2002; 22: 41734178.
  • 26
    Tricarico C, Pinzani P, Bianchi S, Paglierani M, Distante V, Pazzagli M, et al. Quantitative real-time reverse transcription polymerase chain reaction: normalization to rRNA or single housekeeping genes is inappropriate for human tissue biopsies. Anal Biochem 2002; 309: 293300.
  • 27
    Yancey PG, Bortnick AE, Kellner-Weibel G, de la Llera-Moya M, Phillips MC, Rothblat GH. Importance of different pathways of cellular cholesterol efflux. Arterioscler Thromb Vasc Biol 2003; 23: 712719.
  • 28
    Wang N, Lan D, Chen W, Matsuura F, Tall AR. ATP-binding cassette transporters G1 and G4 mediate cellular cholesterol efflux to high-density lipoproteins. Proc Natl Acad Sci U S A 2004; 101: 97749779.
  • 29
    Venkateswaran A, Laffitte BA, Joseph SB, Mak PA, Wilpitz DC, Edwards PA, et al. Control of cellular cholesterol efflux by the nuclear oxysterol receptor LXRα. Proc Natl Acad Sci U S A 2000; 97: 1209712102.
  • 30
    Sabol SL, Brewer HB Jr, Santamarina-Fojo S. The human ABCG1 gene: identification of LXR response elements that modulate expression in macrophages and liver. J Lipid Res 2005; 46: 21512167.
  • 31
    Malerod L, Juvet LK, Hanssen-Bauer A, Eskild W, Berg T. Oxysterol-activated LXRα/RXR induces hSR-BI-promoter activity in hepatoma cells and preadipocytes. Biochem Biophys Res Commun 2002; 299: 916923.
  • 32
    DeBose-Boyd RA, Ou J, Goldstein JL, Brown MS. Expression of sterol regulatory element-binding protein 1c (SREBP-1c) mRNA in rat hepatoma cells requires endogenous LXR ligands. Proc Natl Acad Sci U S A 2001; 98: 14771482.
  • 33
    Janowski BA, Grogan MJ, Jones SA, Wisely GB, Kliewer SA, Corey EJ, et al. Structural requirements of ligands for the oxysterol liver X receptors LXRα and LXRβ. Proc Natl Acad Sci U S A 1999; 96: 266271.
  • 34
    Fu X, Menke JG, Chen Y, Zhou G, MacNaul KL, Wright SD, et al. 27-hydroxycholesterol is an endogenous ligand for liver X receptor in cholesterol-loaded cells. J Biol Chem 2001; 276: 3837838387.
  • 35
    Xu G, Li H, Pan LX, Shang Q, Honda A, Ananthanarayanan M, Erickson SK, et al. FXR-mediated down-regulation of CYP7A1 dominates LXRα in long-term cholesterol-fed NZW rabbits. J Lipid Res 2003; 44: 19561962.
  • 36
    Xu G, Pan LX, Li H, Shang Q, Honda A, Shefer S, et al. Dietary cholesterol stimulates CYP7A1 in rats because farnesoid X receptor is not activated. Am J Physiol Gastrointest Liver Physiol 2004; 286: G730G735.
  • 37
    Adams CM, Reitz J, De Brabander JK, Feramisco JD, Li L, Brown MS, et al. Cholesterol and 25-hydroxycholesterol inhibit activation of SREBPs by different mechanisms, both involving SCAP and Insigs. J Biol Chem 2004; 279: 5277252780.
  • 38
    Yabe D, Xia ZP, Adams CM, Rawson RB. Three mutations in sterol-sensing domain of SCAP block interaction with insig and render SREBP cleavage insensitive to sterols. Proc Natl Acad Sci U S A 2002; 99: 1667216677.
  • 39
    Engelking LJ, Kuriyama H, Hammer RE, Horton JD, Brown MS, Goldstein JL, et al. Overexpression of Insig-1 in the livers of transgenic mice inhibits SREBP processing and reduces insulin-stimulated lipogenesis. J Clin Invest 2004; 113: 11681175.
  • 40
    Norlin M, Toll A, Bjorkhem I, Wikvall K. 24-hydroxycholesterol is a substrate for hepatic cholesterol 7α-hydroxylase (CYP7A). J Lipid Res 2000; 41: 16291639.
  • 41
    Norlin M, Andersson U, Bjorkhem I, Wikvall K. Oxysterol 7α-hydroxylase activity by cholesterol 7α-hydroxylase (CYP7A). J Biol Chem 2000; 275: 3404634053.
  • 42
    Menke JG, Macnaul KL, Hayes NS, Baffic J, Chao YS, Elbrecht A, et al. A novel liver X receptor agonist establishes species differences in the regulation of cholesterol 7α-hydroxylase (CYP7a). Endocrinology 2002; 143: 25482558.
  • 43
    Chiang JY. Bile acid regulation of gene expression: roles of nuclear hormone receptors. Endocr Rev 2002; 23: 443463.
  • 44
    Wang M, Tan Y, Costa RH, Holterman AX. In vivo regulation of murine CYP7A1 by HNF-6: a novel mechanism for diminished CYP7A1 expression in biliary obstruction. Hepatology 2004; 40: 600608.
  • 45
    Yamamoto T, Shimano H, Nakagawa Y, Ide T, Yahagi N, Matsuzaka T, et al. SREBP-1 interacts with hepatocyte nuclear factor-4α and interferes with PGC-1 recruitment to suppress hepatic gluconeogenic genes. J Biol Chem 2004; 279: 1202712035.
  • 46
    De Fabiani E, Mitro N, Gilardi F, Caruso D, Galli G, Crestani M. Coordinated control of cholesterol catabolism to bile acids and of gluconeogenesis via a novel mechanism of transcription regulation linked to the fasted-to-fed cycle. J Biol Chem 2003; 278: 3912439132.
  • 47
    Shimano H, Horton JD, Hammer RE, Shimomura I, Brown MS, Goldstein JL. Overproduction of cholesterol and fatty acids causes massive liver enlargement in transgenic mice expressing truncated SREBP-1a. J Clin Invest 1996; 98: 15751584.
  • 48
    Norlin M, Chiang JY. Transcriptional regulation of human oxysterol 7α-hydroxylase by sterol response element binding protein. Biochem Biophys Res Commun 2004; 316: 158164.
  • 49
    del Castillo-Olivares A, Gil G. Differential effects of sterol regulatory binding proteins 1 and 2 on sterol 12α-hydroxylase. SREBP-2 suppresses the sterol 12α-hydroxylase promoter. J Biol Chem 2002; 277: 67506757.
  • 50
    Yang Y, Eggertsen G, Gafvels M, Andersson U, Einarsson C, Bjorkhem I, et al. Mechanisms of cholesterol and sterol regulatory element binding protein regulation of the sterol 12α-hydroxylase gene (CYP8B1). Biochem Biophys Res Commun 2004; 320: 12041210.