• 1
    Redinger RN. Nuclear receptors in cholesterol catabolism: molecular biology of the enterohepatic circulation of bile salts and its role in cholesterol homeostasis. J Lab Clin Med 2003; 142: 720.
  • 2
    Verreault M, Senekeo-Effenberger K, Trottier J, Bonzo JA, Belanger J, Kaeding J, et al. The liver X-receptor alpha controls hepatic expression of the human bile acid-glucuronidating UGT1A3 enzyme in human cells and transgenic mice. HEPATOLOGY 2006; 44: 368378.
  • 3
    Svegliati-Baroni G, Ridolfi F, Hannivoort R, Saccomanno S, Homan M, De Minicis S, et al. Bile acids induce hepatic stellate cell proliferation via activation of the epidermal growth factor receptor. Gastroenterology 2005; 128: 10421055.
  • 4
    Huang W. Nuclear receptor-dependent bile acid signaling is required for normal liver regeneration. Science 2006; 312: 233236.
  • 5
    Higuchi H, Grambihler A, Canbay A, Bronk SF, Gores GJ. Bile acids up-regulate death receptor 5/TRAIL-receptor 2 expression via a c-Jun N-terminal kinase-dependent pathway involving Sp1. J Biol Chem 2004; 279: 5160.
  • 6
    Schoemaker MH, Gommans WM, Conde de la Rosa L, Homan M, Klok P, Trautwein C, et al. Resistance of rat hepatocytes against bile acid-induced apoptosis in cholestatic liver injury is due to nuclear factor-kappa B activation. J Hepatol 2003; 39: 153161.
  • 7
    Pauli-Magnus C, Stieger B, Meier Y, Kullak-Ublick GA, Meier PJ. Enterohepatic transport of bile salts and genetics of cholestasis. J Hepatol 2005; 43: 342357.
  • 8
    Trauner M, Boyer JL. Cholestatic syndromes. Current opinion in gastroenterology 2003; 19: 216231.
  • 9
    Russell DW. The enzymes, regulation, and genetics of bile acid synthesis. Annu Rev Biochem 2003; 72: 137174.
  • 10
    Falany CN, Johnson MR, Barnes S, Diasio RB. Glycine and taurine conjugation of bile acids by a single enzyme. Molecular cloning and expression of human liver bile acid CoA:amino acid N-acyltransferase. J Biol Chem 1994; 269: 1937519379.
  • 11
    Carlton VE, Harris BZ, Puffenberger EG, Batta AK, Knisely AS, Robinson DL, et al. Complex inheritance of familial hypercholanemia with associated mutations in TJP2 and BAAT. Nature Genet 2003; 34: 9196.
  • 12
    He D, Barnes S, Falany CN. Rat liver bile acid CoA:amino acid N-acyltransferase: expression, characterization, and peroxisomal localization. J Lipid Res 2003; 44: 22422249.
  • 13
    Solaas K, Ulvestad A, Soreide O, Kase BF. Subcellular organization of bile acid amidation in human liver: a key issue in regulating the biosynthesis of bile salts. J Lipid Res 2000; 41: 11541162.
  • 14
    Solaas K, Kase BF, Pham V, Bamberg K, Hunt MC, Alexson SE. Differential regulation of cytosolic and peroxisomal bile acid amidation by PPAR alpha activation favors the formation of unconjugated bile acids. J Lipid Res 2004; 45: 10511060.
  • 15
    Garbutt JT, Wilkins RM, Lack L, Tyor MP. Bacterial modification of taurocholate during enterohepatic recirculation in normal man and patients with small intestinal disease. Gastroenterology 1970; 59: 553566.
  • 16
    Setchell KD, Setchell KD, Lawson AM, Blackstock EJ, Murphy GM. Diurnal changes in serum unconjugated bile acids in normal man. Gut 1982; 23: 637642.
  • 17
    Northfield TC. Postprandial concentrations of free and conjugated bile acids down the length of the normal human small intestine. Gut 1973; 14: 513518.
  • 18
    Fracchia M, Jazrawi RP, Galatola G. Determination of gallbladder bile lithogenicity in patients with primary biliary cirrhosis. Ital J Gastroenterol 1996; 28: 255260.
  • 19
    Ros JE, Roskams TA, Geuken M, Havinga R, Splinter PL, Petersen BE, et al. ATP binding cassette transporter gene expression in rat liver progenitor cells. Gut 2003; 52: 10601067.
  • 20
    Gurantz D, Schteingart CD, Hagey LR, Steinbach JH, Grotmol T, Hofmann AF. Hypercholeresis induced by unconjugated bile acid infusion correlates with recovery in bile of unconjugated bile acids. HEPATOLOGY 1991; 13: 540550.
  • 21
    Yeh HZ, Schteingart CD, Hagey LR, Ton-Nu HT, Bolder U, Gavrilkina MA, et al. Effect of side chain length on biotransformation, hepatic transport, and choleretic properties of chenodeoxycholyl homologues in the rodent: studies with dinorchenodeoxycholic acid, norchenodeoxycholic acid, and chenodeoxycholic acid. HEPATOLOGY 1997; 26: 374385.
  • 22
    O'Byrne J, Hunt MC, Rai DK, Saeki M, Alexson SE. The human bile acid-CoA:amino acid N-acyltransferase functions in the conjugation of fatty acids to glycine. J Biol Chem 2003; 278: 3423734244.
  • 23
    Subramani S, Koller A, Snyder WB. Import of peroxisomal matrix and membrane proteins. Annu Rev Biochem 2000; 69: 399418.
  • 24
    Moshage H, Casini A, Lieber CS. Acetaldehyde selectively stimulates collagen production in cultured rat liver fat-storing cells but not in hepatocytes. HEPATOLOGY 1990; 12: 511518.
  • 25
    Sambrook J, Fritsch EF, Maniatis T, Ford N. Molecular Cloning: A Laboratory Manual. 2nd ed. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory Press, 1989.
  • 26
    Paquereau L, Le Cam A. Electroporation-mediated gene transfer into hepatocytes: preservation of a growth hormone response. Anal Biochem 1992; 204: 147151.
  • 27
    Schoemaker MH, Ros JE, Homan M, Trautwein C, Liston P, Poelstra K, et al. Cytokine regulation of pro- and anti-apoptotic genes in rat hepatocytes: NF-kappaB-regulated inhibitor of apoptosis protein 2 (cIAP2) prevents apoptosis. J Hepatol 2002; 36: 742750.
  • 28
    Biardi L, Krisans SK. Compartmentalization of cholesterol biosynthesis. Conversion of mevalonate to farnesyl diphosphate occurs in the peroxisomes. J Biol Chem 1996; 271: 17841788.
  • 29
    Hogenboom S, Tuyp JJ, Espeel M, Koster J, Wanders RJ, Waterham HR. Phosphomevalonate kinase is a cytosolic protein in humans. J Lipid Res 2004; 45: 697705.
  • 30
    Laemmli UK. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 1970; 227: 680685.
  • 31
    Kyhse-Andersen J. Electroblotting of multiple gels: a simple apparatus without buffer tank for rapid transfer of proteins from polyacrylamide to nitrocellulose. J Biochem Biophys Methods 1984; 10: 203209.
  • 32
    Kwakye JB, Johnson MR, Barnes S, Grizzle WE, Diasio RB. Identification of bile acid-CoA: amino acid N-acyltransferase in rat kidney. Biochem J 1991; 280: 821824.
  • 33
    Antonenkov VD, Sormunen RT, Hiltunen JK. The behavior of peroxisomes in vitro: mammalian peroxisomes are osmotically sensitive particles. Am J Physiol Cell Physiol 2004; 287: C1623C1635.
  • 34
    Leighton F. Structure, composition, physical properties, and turnover of proliferated peroxisomes. A study of the trophic effects of Su-13437 on rat liver. J Cell Biol 1975; 67: 281309.
  • 35
    Yoshihara T, Hamamoto T, Munakata R, Tajiri R, Ohsumi M, Yokota S. Localization of cytosolic NADP-dependent isocitrate dehydrogenase in the peroxisomes of rat liver cells: biochemical and immunocytochemical studies. J Histochem Cytochem 2001; 49: 11231131.
  • 36
    McNew JA, Goodman JM. An oligomeric protein is imported into peroxisomes in vivo. J Cell Biol 1994; 127: 12451257.
  • 37
    Walton PA, Hill PE, Subramani S. Import of stably folded proteins into peroxisomes. Mol Biol Cell 1995; 6: 675683.
  • 38
    Swinkels BW, Gould SJ, Subramani S. Targeting efficiencies of various permutations of the consensus C-terminal tripeptide peroxisomal targeting signal. FEBS Letters 1992; 305: 133136.
  • 39
    Lametschwandtner G, Brocard C, Fransen M, Van Veldhoven P, Berger J, Hartig A. The difference in recognition of terminal tripeptides as peroxisomal targeting signal 1 between yeast and human is due to different affinities of their receptor Pex5p to the cognate signal and to residues adjacent to it. J Biol Chem 1998; 273: 3363533643.