SEARCH

SEARCH BY CITATION

Abstract

Many patients with chronic hepatitis caused by hepatitis C virus (HCV) infection develop liver fibrosis with high risk for hepatocellular carcinoma (HCC), but the mechanism underling this process is unclear. Conversely, transforming growth factor beta (TGF-β) activates not only TGF-β type I receptor (TβRI) but also c-Jun N-terminal kinase (JNK), which convert the mediator Smad3 into two distinctive phosphoisoforms: C-terminally phosphorylated Smad3 (pSmad3C) and linker-phosphorylated Smad3 (pSmad3L). Whereas the TβRI/pSmad3C pathway suppresses epithelial cell growth by upregulating p21WAF1 transcription, JNK/pSmad3L-mediated signaling promotes extracellular matrix deposition, partly, by upregulating plasminogen activator inhibitor 1 (PAI-1). We studied the domain-specific Smad3 phosphorylation in biopsy specimens representing chronic hepatitis, cirrhosis, or HCC from 100 patients chronically infected with HCV, and correlated Smad3 phosphorylation with clinical course. As HCV-infected livers progressed from chronic hepatitis through cirrhosis to HCC, hepatocytic pSmad3L/PAI-1 increased with fibrotic stage and necroinflammatory grade, and pSmad3C/p21WAF1 decreased. Of 14 patients with chronic hepatitis C with strong hepatocytic pSmad3L positivity, 8 developed HCC within 12 years; only 1 of 12 showing little pSmad3L positivity developed HCC. We further sought molecular mechanisms in vitro. JNK activation by the pro-inflammatory cytokine interleukin-1β stimulated the pSmad3L/PAI-1 pathway in facilitating hepatocytic invasion, in the meantime reducing TGF-β-dependent tumor-suppressive activity by the pSmad3C/p21WAF1 pathway. Conclusion: These results indicate that chronic inflammation associated with HCV infection shifts hepatocytic TGF-β signaling from tumor-suppression to fibrogenesis, accelerating liver fibrosis and increasing risk for HCC. (HEPATOLOGY 2007;46:48–57.)