SEARCH

SEARCH BY CITATION

References

  • 1
    Thunell S. Porphyrins, porphyrin metabolism and porphyrias. I. Update. Scand J Clin Lab Invest 2000; 60: 509540.
  • 2
    May BK, Dogra SC, Sadlon TJ, Bhasker CR, Cox TC, Bottomley SS. Molecular regulation of heme biosynthesis in higher vertebrates. Prog Nucleic Acid Res Mol Biol 1995; 51: 151.
  • 3
    Kolluri S, Sadlon TJ, May BK, Bonkovsky HL. Haem repression of the housekeeping 5-aminolaevulinic acid synthase gene in the hepatoma cell line LMH. Biochem J 2005; 392: 173180.
  • 4
    Anderson KE, Bloomer JR, Bonkovsky HL, Kushner JP, Pierach CA, Pimstone NR, et al. Recommendations for the diagnosis and treatment of the acute porphyrias. Ann Intern Med 2005; 142: 439450.
  • 5
    Kauppinen R. Porphyrias. Lancet 2005; 365: 241252.
  • 6
    Fraser DJ, Podvinec M, Kaufmann MR, Meyer UA. Drugs mediate the transcriptional activation of the 5-aminolevulinic acid synthase (ALAS1) gene via the chicken xenobiotic-sensing nuclear receptor (CXR). J Biol Chem 2002; 277: 3471734726.
  • 7
    Fraser DJ, Zumsteg A, Meyer UA. Nuclear receptors constitutive androstane receptor and pregnane X receptor activate a drug-responsive enhancer of the murine 5-aminolevulinic acid synthase gene. J Biol Chem 2003; 278: 3939239401.
  • 8
    Podvinec M, Handschin C, Looser R, Meyer UA. Identification of the xenosensors regulating human 5-aminolevulinate synthase. Proc Natl Acad Sci U S A 2004; 101: 91279132.
  • 9
    Handschin C, Lin J, Rhee J, Peyer AK, Chin S, Wu PH, et al. Nutritional regulation of hepatic heme biosynthesis and porphyria through PGC-1alpha. Cell 2005; 122: 505515.
  • 10
    Kalaany NY, Mangelsdorf DJ. LXRS AND FXR: the yin and yang of cholesterol and fat metabolism. Annu Rev Physiol 2006; 68: 159191.
  • 11
    Lee FY, Lee H, Hubbert ML, Edwards PA, Zhang Y. FXR, a multipurpose nuclear receptor. Trends Biochem Sci 2006; 31: 572580.
  • 12
    Goodwin B, Jones SA, Price RR, Watson MA, McKee DD, Moore LB, et al. A regulatory cascade of the nuclear receptors FXR, SHP-1, and LRH-1 represses bile acid biosynthesis. Mol Cell 2000; 6: 517526.
  • 13
    Gnerre C, Blattler S, Kaufmann MR, Looser R, Meyer UA. Regulation of CYP3A4 by the bile acid receptor FXR: evidence for functional binding sites in the CYP3A4 gene. Pharmacogenetics 2004; 14: 635645.
  • 14
    Javitt NB, Rifkind A, Kappas A. Porphyrin-heme pathway: regulation by intermediates in bile acid synthesis. Science 1973; 182: 841842.
  • 15
    Gibson PR, Grant J, Cronin V, Blake D, Ratnaike S. Effect of hepatobiliary disease, chronic hepatitis C and hepatitis B virus infections and interferon-alpha on porphyrin profiles in plasma, urine and faeces. J Gastroenterol Hepatol 2000; 15: 192201.
  • 16
    Rocchi E, Ventura P, Casalgrandi G, Machini S. Urinary coproporphyrin isomers in congenital and acquired liver cholestasis. In: Porphyrins and Porpyhria 2005 Conference. Cape Town, South Africa; Abstracts at European Porphyria Initiative. www.porphyria-europe.com; 2005:20–21.
  • 17
    Rencurel F, Foretz M, Kaufmann MR, Stroka D, Looser R, Leclerc I, et al. Stimulation of AMP-activated protein kinase is essential for the induction of drug metabolizing enzymes by phenobarbital in human and mouse liver. Mol Pharmacol 2006; 70: 19251934.
  • 18
    Jung D, Elferink MG, Stellaard F, Groothuis GM. Analysis of bile acid-induced regulation of FXR target genes in human liver slices. Liver Int 2007; 27: 137144.
  • 19
    Sinclair PR, Gorman N, Cornell NW. Measurement of ALA synthase activity. Current Protocols in Toxicology. 1999. Unit 8.2.1-8.2.10.
  • 20
    Blanchette M, Kent WJ, Riemer C, Elnitski L, Smit AF, Roskin KM, et al. Aligning multiple genomic sequences with the threaded blockset aligner. Genome Res 2004; 14: 708715.
  • 21
    Podvinec M, Kaufmann MR, Handschin C, Meyer UA. NUBIScan, an in silico approach for prediction of nuclear receptor response elements. Mol Endocrinol 2002; 16: 12691279.
  • 22
    Jung D, Mangelsdorf DJ, Meyer UA. Pregnane X receptor is a target of farnesoid X receptor. J Biol Chem 2006; 281: 1908119091.
  • 23
    Elferink MG, Olinga P, Draaisma AL, Merema MT, Faber KN, Slooff MJ, et al. LPS-induced downregulation of MRP2 and BSEP in human liver is due to a posttranscriptional process. Am J Physiol Gastrointest Liver Physiol 2004; 287: G1008G1016.
  • 24
    Zhang Y, Castellani LW, Sinal CJ, Gonzalez FJ, Edwards PA. Peroxisome proliferator-activated receptor-gamma coactivator 1alpha (PGC-1alpha) regulates triglyceride metabolism by activation of the nuclear receptor FXR. Genes Dev 2004; 18: 157169.
  • 25
    Guengerich FP. Cytochrome P450: what have we learned and what are the future issues? Drug Metab Rev 2004; 36: 159197.
  • 26
    Barbier O, Torra IP, Sirvent A, Claudel T, Blanquart C, Duran-Sandoval D, et al. FXR induces the UGT2B4 enzyme in hepatocytes: a potential mechanism of negative feedback control of FXR activity. Gastroenterology 2003; 124: 19261940.
  • 27
    Song CS, Echchgadda I, Baek BS, Ahn SC, Oh T, Roy AK, et al. Dehydroepiandrosterone sulfotransferase gene induction by bile acid activated farnesoid X receptor. J Biol Chem 2001; 276: 4254942556.
  • 28
    Kast HR, Goodwin B, Tarr PT, Jones SA, Anisfeld AM, Stoltz CM, et al. Regulation of multidrug resistance-associated protein 2 (ABCC2) by the nuclear receptors pregnane X receptor, farnesoid X-activated receptor, and constitutive androstane receptor. J Biol Chem 2002; 277: 29082915.
  • 29
    Handschin C, Meyer UA. Induction of drug metabolism: the role of nuclear receptors. Pharmacol Rev 2003; 55: 649673.
  • 30
    Guo GL, Lambert G, Negishi M, Ward JM, Brewer HB Jr, Kliewer SA, et al. Complementary roles of farnesoid X receptor, pregnane X receptor, and constitutive androstane receptor in protection against bile acid toxicity. J Biol Chem 2003; 278: 4506245071.
  • 31
    Handschin C, Meyer UA. Regulatory network of lipid-sensing nuclear receptors: roles for CAR, PXR, LXR, and FXR. Arch Biochem Biophys 2005; 433: 387396.
  • 32
    Zhang J, Huang W, Qatanani M, Evans RM, Moore DD. The constitutive androstane receptor and pregnane X receptor function coordinately to prevent bile acid-induced hepatotoxicity. J Biol Chem 2004; 279: 4951749522.
  • 33
    Goodwin B, Gauthier KC, Umetani M, Watson MA, Lochansky MI, Collins JL, et al. Identification of bile acid precursors as endogenous ligands for the nuclear xenobiotic pregnane X receptor. Proc Natl Acad Sci U S A 2003; 100: 223228.
  • 34
    Staudinger JL, Goodwin B, Jones SA, Hawkins-Brown D, MacKenzie KI, LaTour A, et al. The nuclear receptor PXR is a lithocholic acid sensor that protects against liver toxicity. Proc Natl Acad Sci U S A 2001; 98: 33693374.
  • 35
    Krasowski MD, Yasuda K, Hagey LR, Schuetz EG. Evolution of the pregnane x receptor: adaptation to cross-species differences in biliary bile salts. Mol Endocrinol 2005; 19: 17201739.
  • 36
    Wang L, Lee YK, Bundman D, Han Y, Thevananther S, Kim CS, et al. Redundant pathways for negative feedback regulation of bile acid production. Dev Cell 2002; 2: 721731.
  • 37
    Miao J, Fang S, Bae Y, Kemper JK. Functional inhibitory cross-talk between constitutive androstane receptor and hepatic nuclear factor-4 in hepatic lipid/glucose metabolism is mediated by competition for binding to the DR1 motif and to the common coactivators, GRIP-1 and PGC-1alpha. J Biol Chem 2006; 281: 1453714546.
  • 38
    Doss M, Look D, Henning H, Nawrocki P, Schmidt A, Dölle W, et al. Hepatic porphyrins and urinary porphyrins and porphyrin precursors in liver cirrhosis. Klin Wochenschr 1972; 50: 10251032.
  • 39
    Thunell S. (Far) outside the box: genomic approach to acute porphyria. Physiol Res 2007; 55(Suppl 2): S43S66.
  • 40
    Giono LE, Varone CL, Canepa ET. 5-Aminolaevulinate synthase gene promoter contains two cAMP-response element (CRE)-like sites that confer positive and negative responsiveness to CRE-binding protein (CREB). Biochem J 2001; 353: 307316.