SEARCH

SEARCH BY CITATION

References

  • 1
    Lazaridis KN, Gores GJ. Cholangiocarcinoma. Gastroenterology 2005; 128: 16551667.
  • 2
    Khan SA, Thomas HC, Davidson BR, Taylor-Robinson SD. Cholangiocarcinoma. Lancet 2005; 366: 13031314.
  • 3
    Shaib YH, El-Serag HB, Davila JA, Morgan R, McGlynn KA. Risk factors of intrahepatic cholangiocarcinoma in the United States: a case-control study. Gastroenterology 2005; 128: 620626.
  • 4
    Patel T. Cholangiocarcinoma. Nat Clin Pract Gastroenterol Hepatol 2006; 3: 3342.
  • 5
    McGlynn KA, Tarone RE, El-Serag HB. A comparison of trends in the incidence of hepatocellular carcinoma and intrahepatic cholangiocarcinoma in the United States. Cancer Epidemiol Biomarkers Prev 2006; 15: 11981203.
  • 6
    Sirica AE. Cholangiocarcinoma: molecular targeting strategies for chemoprevention and therapy. HEPATOLOGY 2005; 41: 515.
  • 7
    Thamavit W, Pairojkul C, Tiwawech D, Itoh M, Shirai T, Ito N. Promotion of cholangiocarcinogenesis in the hamster liver by bile duct ligation after dimethylnitrosamine initiation. Carcinogenesis 1993; 14: 24152417.
  • 8
    Kinami Y, Ashida Y, Seto K, Takashima S, Kita I. Influence of incomplete bile duct obstruction on the occurrence of cholangiocarcinoma induced by diisopropanolnitrosamine in hamsters. Oncology 1990; 47: 170176.
  • 9
    Kinami Y, Ashida Y, Seto K, Takashima S, Kita I. The effect of incomplete bile duct obstruction on diisopropanolnitrosamine-induced cholangiocarcinoma. HPB Surgery 1991; 3: 117127.
  • 10
    Yang L, Faris RA, Hixson DC. Long-term culture and characteristics of normal rat liver bile duct epithelial cells. Gastroenterology 1993; 104: 840852.
  • 11
    Lai G-H, Zhang Z, Shen X-N, Ward DJ, DeWitt JL, Holt SE, et al. erbB-2/neu Transformed rat cholangiocytes recapitulate key cellular and molecular features of human bile duct cancer. Gastroenterology 2005; 129: 20472057.
  • 12
    Hooth MJ, Coleman WB, Presnell SC, Borchert KM, Grisham JW, Smith GJ. Spontaneous neoplastic transformation of WB-F 344 rat liver epithelial cells. Am J Pathol 1998; 153: 19131921.
  • 13
    Radaeva S, Ferreira-Gonzalez A, Sirica AE. Overexpression of C-NEU and C-MET during rat liver cholangiocarcinogenesis: a link between biliary intestinal metaplasia and mucin-producing cholangiocarcinoma. HEPATOLOGY 1999; 29: 14531462.
  • 14
    Lai G-H, Zhang Z, Sirica AE. Celecoxib acts in a cyclooxygenase-2-independent manner and in synergy with emodin to suppress rat cholangiocarcinoma growth in vitro through a mechanism involving enhanced Akt inactivation and increased activation of caspases-9 and -3. Mol Cancer Therapeutics 2003; 2: 265271.
  • 15
    Zhang Z, Lai G-H, Sirica AE. Celecoxib-induced apoptosis in rat cholangiocarcinoma cells mediated by Akt inactivation and Bax translocation. HEPATOLOGY 2004; 39: 10281037.
  • 16
    Pfaffl MW. A new mathematical model for relative quantification in real-time RT-PCR. Nucl Acids Res 2001; 29: e45.
  • 17
    Sirica AE, Gainey TW. A new rat bile ductular epithelial cell culture model characterized by the appearance of polarized bile ducts in vitro. HEPATOLOGY 1997; 26: 537549.
  • 18
    Mathis GA, Wyss PA, Schuetz EG, Hughey RP, Sirica AE. Expression of multiple proteins structurally related to gamma-glutamyl transpeptidase in non-neoplastic adult rat hepatocytes in vivo and in culture. J Cell Physiol 1991; 146: 234241.
  • 19
    Bargmann CI, Hung M-C, Weinberg RA. Multiple independent activations of the neu oncogene by a point mutation altering the transmembrane domain of p185. Cell 1986; 45: 649657.
  • 20
    Sirica AE, Cole SL, Williams T. A unique rat model of bile ductular hyperplasia in which liver is almost totally replaced with well-differentiated bile ductules. Am J Pathol 1994; 144: 12571268.
  • 21
    Goere D, Wagholikar GD, Pessaux P, Carrére N, Silbert A, Vilgrain V, et al. Utility of staging laparoscopy in subsets of biliary cancers: laparoscopy is a powerful diagnostic tool in patients with intrahepatic and gallbladder carcinoma. Surg Endosc 2006; 20: 721725.
  • 22
    Sirica AE, Lai G-H, Endo K, Zhang Z, Yoon B. Cyclooxygenase-2 and ERBB-2 in cholangiocarcinoma:potential therapeutic targets. Semin Liver Dis 2002; 22: 303313.
  • 23
    Kiguchi K, Carbajal S, Chan K, Beltrán L, Ruffino L, Shen J, et al. Constitutive expression of ErbB-2 in gallbladder epithelium results in development of adenocarcinoma. Cancer Res 2001; 61: 69716976.
  • 24
    Endo K, Yoon B, Pairojkul C, Demetris AJ, Sirica AE. ERBB-2 overexpression and cyclooxygenase-2 up-regulation in human cholangiocarcinoma and risk conditions. HEPATOLOGY 2002; 36: 439450.
  • 25
    Yoon J-H, Higuchi H, Werneburg NW, Kaufmann SH, Gores GJ. Bile acids induce cyclooxygenase-2 expression via the epidermal growth factor receptor in a human cholangiocarcinoma cell line. Gastroenterology 2002; 122: 985993.
  • 26
    Yeh C-N, Maitra A, Lee K-F, Jan Y-Y, Chen M-F. Thioacetamide-induced intestinal-type cholangiocarcinoma in rat: an animal model recapitulating the multi-stage progression of human cholangiocarcinoma. Carcinogenesis 2004; 25: 631636.
  • 27
    Javle MM, Yu J, Khoury T, Chadha KC, Iyer RV, Foster J, et al. Akt expression may predict favorable prognosis in cholangiocarcinoma. J Gastroenterol Hepatol 2006; 21: 17441751.
  • 28
    Vadlamudi R, Mandal M, Adam L, Steinbach G, Mendelsohn J, Kumar R. Regulation of cyclooxygenase-2 pathway by HER2 receptor. Oncogene 1999; 18: 305314.
  • 29
    Liu Ch, Chang S-H, Narko K, Trifan OC, Wu M-T, Smith E, et al. Overexpression of cyclooxygenase-2 is sufficient to induce tumorigenesis in transgenic mice. J Biol Chem 2001; 276: 1856318569.
  • 30
    Leng J, Han C, Demetris AJ, Michalopoulos GK, Wu T. Cyclooxygenase-2 promotes hepatocellular carcinoma cell growth through AKT activation: evidence for AKT inhibition in celecoxib-induced apoptosis. HEPATOLOGY 2003; 38: 756768.
  • 31
    Wu T. Cyclooxygenase-2 and prostaglandin signaling in cholangiocarcinoma. Biochim Biophys Acta 2005; 1755: 135150.
  • 32
    Rahman MA, Kohno H, Nagasue N. COX-2: a target for preventing hepatic carcinoma? Expert Opin Ther Targets 2002; 6: 483490.
  • 33
    Okaro AC, Deery AR, Hutchins RR, Davidson BR. The expression of antiapoptotic proteins Bcl-2, Bcl-X(L), and Mcl-1 in benign, dysplastic, and malignant biliary epithelium. J Clin Pathol 2001; 54: 927932.
  • 34
    Lin M-T, Lee R-C, Yang P-C, Ho F-M, Kuo M-L. Cyclooxygenase-2 inducing Mcl-1-dependent survival mechanism in human lung adenocarcinoma CL1.0 cells. J Biol Chem 2001; 276: 4899749002.
  • 35
    Eibl G, Bruemmer D, Okada Y, Duffy JP, Law RE, Reber HA, et al. PGE(2) is generated by specific COX-2 activity and increases VEGF production in COX-2-expressing human pancreatic cancer cells. Biochem Biophys Res Commun 2003; 306: 887897.
  • 36
    Zhi Y-H, Liu R-S, Song M-M, Tian Y, Long J, Tu W, et al. Cyclooxyenase-2 promotes angiogenesis by increasing vascular endothelial growth factor and predicts prognosis in gallbladder carcinoma. World J Gastroenterol 2005; 11: 37243728.
  • 37
    Matsumura N, Yamamoto M, Aruga A, Takasaki K, Nakano M. Correlation between expression of MUC1 core protein and outcome after surgery in mass-forming intrahepatic cholangiocarcinoma. Cancer 2002; 94: 17701776.
  • 38
    Zen Y, Sasaki M, Fujii T, Chen T-C, Chen M-F, Yeh T-S, et al. Different expression patterns of mucin core proteins and cytokeratins during intrahepatic cholangiocarcinogenesis from biliary intraepithelial neoplasia and intraductal papillary neoplasms of the bile duct-an immunohistochemical study of 110 cases of hepatolithiasis. J Hepatol 2006; 44: 350358.
  • 39
    Kishimoto H, Sasahara K, Yamazaki K, Nagata T, Uotani H, Yamashita I, et al. Obstructive jaundice facilitates hepatic metastasis of B16F1 mouse melanoma cells: participation of increased VCAM-1 expression in the liver. Oncology Reports 2001; 8: 575578.
  • 40
    Sasaki A, Kawano K, Aramaki M, Ohno T, Tahara K, Kitano S. Correlation between tumor size and mode of spread in mass-forming intrahepatic cholangiocarcinoma. Hepatogastroenterol 2004; 51: 224228.
  • 41
    Napoli J, Prentice D, Niinami C, Bishop GA, Desmond P, McCaughan GW. Sequential increases in the intrahepatic expression of epidermal growth factor, basic fibroblast growth factor, and transforming growth factor -β in a bile duct ligated rat model of cirrhosis. HEPATOLOGY 1997; 26: 624633.
  • 42
    Plebani M, Panozzo MP, Basso D, De Paoli M, Biasin R, Infantolino D. Cytokines and the progression of liver damage in experimental bile duct ligation. Clin Exp Pharmacol Physiol 1999; 26: 358363.
  • 43
    Farazi PA, Zeisberg M, Glickman J, Zhang Y, Kalluri R, DePinho RA. Chronic bile duct injury associated with fibrotic matrix microenvironment provokes cholangiocarcinoma in p53-deficient mice. Cancer Res 2006; 66: 66226627.
  • 44
    Qi K, Qiu H, Sun D, Minuk GY, Lizardo M, Rutherford J, et al. Impact of cirrhosis on the development of experimental hepatic metastases by B16F1 melanoma cells in C57BL/6 mice. HEPATOLOGY 2004; 40: 11441150.
  • 45
    Werneburg NW, Yoon J-H, Higuchi H, Gores GJ. Bile acids activate EGF receptor via a TGF-α-dependent mechanism in human cholangiocyte cell lines. Am J Physiol Gastrointest Liver Physiol 2003; 285: G31G36.
  • 46
    Huang W, Ma K, Zhang J, Qatanani M, Cuvillier J, Liu J, et al. Nuclear receptor-dependent bile acid signaling is required for normal liver regeneration. Science 2006; 312: 233236.