SEARCH

SEARCH BY CITATION

References

  • 1
    Williamson JR, Kreisberg RA, Felts PW. Mechanism for the stimulation of gluconeogenesis by fatty acids in perfused rat liver. Proc Natl Acad Sci U S A 1966; 56: 247254.
  • 2
    Gonzalez-Manchon C, Martin-Requero A, Ayuso MS, Parrilla R. Role of endogenous fatty acids in the control of hepatic gluconeogenesis. Arch Biochem Biophys 1992; 292: 95101.
  • 3
    Tutwiler GF, Dellevigne P. Action of the oral hypoglycemic agent 2-tetradecylglycidic acid on hepatic fatty acid oxidation and gluconeogenesis. J Biol Chem 1979; 254: 29352941.
  • 4
    Agius L, Alberti KG. Regulation of flux through pyruvate dehydrogenase and pyruvate carboxylase in rat hepatocytes. Effects of fatty acids and glucagon. Eur J Biochem 1985; 152: 699707.
  • 5
    Chen X, Iqbal N, Boden G. The effects of free fatty acids on gluconeogenesis and glycogenolysis in normal subjects. J Clin Invest 1999; 103: 365372.
  • 6
    Bougneres PF, Saudubray JM, Marsac C, Bernard O, Odievre M, Girard J. Fasting hypoglycemia resulting from hepatic carnitine palmitoyl transferase deficiency. J Pediatr 1981; 98: 742746.
  • 7
    Roe CR, Ding J. Mitochondrial fatty acid oxidation disorders. In: Scriver CR, Beaudet AL, Sly WS, Valle D, eds. The Metabolic and Molecular Bases of Inherited Disease. 8th ed. New York, NY: McGraw-Hill Medical; 2001: 22972327.
  • 8
    Bandsma RH, Van Dijk TH, Harmsel A, Kok T, Reijngoud DJ, Staels B, et al. Hepatic de novo synthesis of glucose 6-phosphate is not affected in peroxisome proliferator-activated receptor alpha-deficient mice but is preferentially directed toward hepatic glycogen stores after a short term fast. J Biol Chem 2004: 279: 89308937.
  • 9
    Kersten S, Seydoux J, Peters JM, Gonzalez FJ, Desvergne B, Wahli W. Peroxisome proliferator-activated receptor alpha mediates the adaptive response to fasting. J Clin Invest 1999; 103: 14891498.
  • 10
    McGarry JD, Woeltje KF, Kuwajima M, Foster DW. Regulation of ketogenesis and the renaissance of carnitine palmitoyltransferase. Diabetes Metab Rev 1989; 5: 271284.
  • 11
    McGarry JD, Foster DW. Regulation of hepatic fatty acid oxidation and ketone body production. Annu Rev Biochem 1980; 49: 395420.
  • 12
    Kiorpes TC, Hoerr D, Ho W, Weaner LE, Inman MG, Tutwiler GF. Identification of 2-tetradecylglycidyl coenzyme A as the active form of methyl 2-tetradecylglycidate (methyl palmoxirate) and its characterization as an irreversible, active site-directed inhibitor of carnitine palmitoyltransferase A in isolated rat liver mitochondria. J Biol Chem 1984; 259: 97509755.
  • 13
    Tutwiler GF, Ho W, Mohrbacher RJ. 2-Tetradecylglycidic acid. Methods Enzymol 1981; 72: 533551.
  • 14
    Tutwiler GF, Ryzlak MT. Inhibition of mitochondrial carnitine palmitoyl transferase by 2-tetradecylglycidic acid (McN-3802). Life Sci 1980; 26: 393397.
  • 15
    Grefhorst A, Hoekstra J, Derks TG, Ouwens DM, Baller JF, Havinga R, et al. Acute hepatic steatosis in mice by blocking beta-oxidation does not reduce insulin sensitivity of very-low-density lipoprotein production. Am J Physiol 2005; 289: G592G598.
  • 16
    Kuipers F, Havinga R, Bosschieter H, Toorop GP, Hindriks FR, Vonk RJ. Enterohepatic circulation in the rat. Gastroenterology 1985; 88: 403411.
  • 17
    Van Dijk TH, Boer TS, Havinga R, Stellaard F, Kuipers F, Reijngoud DJ. Quantification of hepatic carbohydrate metabolism in conscious mice using serial blood and urine spots. Anal Biochem 2003; 322: 113.
  • 18
    Chace DH, DiPerna JC, Mitchell BL, Sgroi B, Hofman LF, Naylor EW. Electrospray tandem mass spectrometry for analysis of acylcarnitines in dried postmortem blood specimens collected at autopsy from infants with unexplained cause of death. Clin Chem 2001; 47: 11661182.
  • 19
    Van Dijk TH, Van der Sluijs FH, Wiegman CH, Baller JF, Gustafson LA, Burger HJ, et al. Acute inhibition of hepatic glucose-6-phosphatase does not affect gluconeogenesis but directs gluconeogenic flux toward glycogen in fasted rats. A pharmacological study with the chlorogenic acid derivative S4048. J Biol Chem 2001; 276: 2572725735.
  • 20
    Hellerstein MK, Neese RA, Linfoot P, Christiansen M, Turner S, Letscher A. Hepatic gluconeogenic fluxes and glycogen turnover during fasting in humans. A stable isotope study. J Clin Invest 1997; 100: 13051319.
  • 21
    Neese RA, Schwarz JM, Faix D, Turner S, Letscher A, Vu D, et al. Gluconeogenesis and intrahepatic triose phosphate flux in response to fasting or substrate loads. Application of the mass isotopomer distribution analysis technique with testing of assumptions and potential problems. J Biol Chem 1995; 270: 1445214466.
  • 22
    Bonnefont JP, Specola NB, Vassault A, Lombes A, Ogier H, De Klerk JB, et al. The fasting test in paediatrics: application to the diagnosis of pathological hypo- and hyperketotic states. Eur J Pediatr 1990; 150: 8085.
  • 23
    Van der Leij FR, Bloks VW, Grefhordt A, Hoekstra J, Gerding A, Kooi K, et al. Gene expression in livers of mice after acute inhibition of β-oxidation. Genomics 2007. doi://10.1016/j.ygeno.2007.08.004. Available at: http://www.sciencedirect.com.
  • 24
    Bandsma RH, Grefhorst A, Van Dijk TH, Van der Sluijs FH, Hammer A, Reijngoud DJ, et al. Enhanced glucose cycling and suppressed de novo synthesis of glucose-6-phosphate result in a net unchanged hepatic glucose output in ob/ob mice. Diabetologia 2004; 47: 20222031.
  • 25
    Previs SF, Fernandez CA, Yang D, Sloviev MV, David F, Brunengraber H. Limitations of the mass isotopomer distribution analysis of glucose to study gluconeogenesis. Substrate cycling between glycerol and triose phosphates in liver. J Biol Chem 1995; 270: 1980619815.
  • 26
    Hellerstein MK, Neese RA. Mass isotopomer distribution analysis at eight years: theoretical, analytic, and experimental considerations. Am J Physiol 1999; 276: E1146E1170.
  • 27
    Landau BR, Wahren J, Chandramouli V, Schumann WC, Ekberg K, Kalhan SC. Contributions of gluconeogenesis to glucose production in the fasted state. J Clin Invest 1996; 98: 378385.
  • 28
    Rognstad R. Isotopic estimation of the hepatic glucose balance in vivo. J Theor Biol 1994; 168: 161173.
  • 29
    Spiekerkoetter U, Ruiter J, Tokunaga C, Wendel U, Mayatepek E, Wijburg FA, et al. Evidence for impaired gluconeogenesis in very long-chain acyl-CoA dehydrogenase-deficient mice. Horm Metab Res 2006; 38: 625630.
  • 30
    Duivenvoorden I, Teusink B, Rensen PCN, Kuipers F, Romijn JA, Havekes LM, et al. Acute inhibition of hepatic β-oxidation in APOE*3Leiden mice does not affect hepatic VLDL secretion or insulin sensitivity. J Lipid Res 2005; 46: 988993.
  • 31
    Xu J, Xiao G, Trujillo C, Chang V, Blanco L, Joseph SB, et al. Peroxisome proliferator-activated receptor alpha (PPARalpha) influences substrate utilization for hepatic glucose production. J Biol Chem 2002; 277: 5023750244.
  • 32
    Burgess SC, Leone TC, Wende AR, Croce MA, Chen Z, Sherry AD, et al. Diminished hepatic gluconeogenesis via defects in tricarboxylic acid cycle flux in peroxisome proliferator-activated receptor gamma coactivator-1alpha (PGC-1alpha)-deficient mice. J Biol Chem 2006; 281: 1900019008.
  • 33
    Groen AK, Van Roermund CW, Vervoorn RC, Tager JM. Control of gluconeogenesis in rat liver cells. Flux control coefficients of the enzymes in the gluconeogenic pathway in the absence and presence of glucagon. Biochem J 1986; 237: 379389.
  • 34
    Morris AA, Lascelles CV, Olpin SE, Lake BD, Leonard JV, Quant PA. Hepatic mitochondrial 3-hydroxy-3-methylglutaryl-coenzyme a synthase deficiency. Pediatr Res 1998; 44: 392396.
  • 35
    Thompson GN, Hsu BY, Pitt JJ, Treacy E, Stanley CA. Fasting hypoketotic coma in a child with deficiency of mitochondrial 3-hydroxy-3-methylglutaryl-CoA synthase. N Engl J Med 1997; 337: 12031207.