• 1
    Keys A. Seven countries, a multivariate analysis of diet and coronary heart disease. Cambridge, MA: Harvard University Press; 1980.
  • 2
    Expert Panel on the Identification, Evaluation, and Treatment of Overweight and Obesity in Adults. Executive summary of the clinical guidelines on the identification, evaluation, and treatment of overweight and obesity in adults. Arch Intern Med 1998; 158: 18551867.
  • 3
    Heini AF, Weinsier RL. Divergent trends in obesity and fat intake patterns: the American paradox. Am J Med 1997; 102: 259264.
  • 4
    Flegal KM, Carroll MD, Kuczmarski RJ, Johnson CL. Overweight and obesity in the United States: prevalence and trends, 1960–1994. Int J Obes Relat Metab Disord 1998; 22: 3947.
  • 5
    Browning JD, Horton JD. Molecular mediators of hepatic steatosis and liver injury. J Clin Invest 2004; 114: 14.
  • 6
    Browning JD, Szczepaniak LS, Dobbins R, Nuremberg P, Horton JD, Cohen JB, et al. Prevalence of hepatic steatosis in an urban population in the United States: impact of ethnicity. HEPATOLOGY 2004; 40: 13871395.
  • 7
    Solga S, Alkhuraishe AR, Clark JM, Torbenson M, Greenwald A, Diehl AM, et al. Dietary composition and nonalcoholic fatty liver disease. Dig Dis Sci 2004; 49: 15781583.
  • 8
    Kang H, Greenson JK, Omo JT, Chao C, Peterman D, Anderson L, et al. Metabolic syndrome is associated with greater histologic severity, higher carbohydrate, and lower fat diet in patients with NAFLD. Am J Gastroenterol 2006; 101: 22472253.
    Direct Link:
  • 9
    Schwarz JM, Linfoot P, Dare D, Aghajanian K. Hepatic de novo lipogenesis in normoinsulinemic and hyperinsulinemic subjects consuming high-fat, low-carbohydrate and low-fat, high-carbohydrate isoenergetic diets. Am J Clin Nutr 2003; 77: 4350.
  • 10
    Schwarz JM, Neese RA, Turner S, Dare D, Hellerstein MK. Short-term alterations in carbohydrate energy intake in humans. Striking effects on hepatic glucose production, de novo lipogenesis, lipolysis, and whole-body fuel selection. J Clin Invest 1995; 96: 27352743.
  • 11
    Bisschop PH, Pereira Arias AM, Ackermans MT, Endert E, Pijl H, Kuipers F, et al. The effects of carbohydrate variation in isocaloric diets on glycogenolysis and gluconeogenesis in healthy men. J Clin Endocrinol Metab 2000; 85: 19631967.
  • 12
    Allick G, Bisschop PH, Ackermans MT, Endert E, Meijer AJ, Kuipers F, et al. A low-carbohydrate/high-fat diet improves glucoregulation in type 2 diabetes mellitus by reducing postabsorptive glycogenolysis. J Clin Endocrinol Metab 2004; 89: 61936197.
  • 13
    Burgess SC, He T, Yan Z, Lindner J, Sherry AD, Malloy CR, et al. Cytosolic phosphoenolpyruvate carboxykinase does not solely control the rate of hepatic gluconeogenesis in the intact mouse liver. Cell Metab 2007; 5: 313320.
  • 14
    Burgess SC, Hausler N, Merritt M, Jeffrey FM, Storey C, Milde A, et al. Impaired tricarboxylic acid cycle activity in mouse livers lacking cytosolic phosphoenolpyruvate carboxykinase. J Biol Chem 2004; 279: 4894148949.
  • 15
    Hakimi P, Johnson MT, Yang J, Lepage DF, Conlon RA, Kalhan SC, et al. Phosphoenolpyruvate carboxykinase and the critical role of cataplerosis in the control of hepatic metabolism. Nutr Metab (Lond) 2005; 2: 33.
  • 16
    Hausler N, Browning J, Merritt M, Storey C, Milde A, Jeffrey FM, et al. Effects of insulin and cytosolic redox state on glucose production pathways in the isolated perfused mouse liver measured by integrated 2H and 13C NMR. Biochem J 2006; 394: 465473.
  • 17
    Jones JG, Solomon MA, Cole SM, Sherry AD, Malloy CR. An integrated (2)H and (13)C NMR study of gluconeogenesis and TCA cycle flux in humans. Am J Physiol Endocrinol Metab 2001; 281: E848E856.
  • 18
    Atkins RC. Dr. Atkins' New Diet Revolution. New York: Avon Books; 1998.
  • 19
    Landau BR, Wahren J, Chandramouli V, Schumann WC, Ekberg K, Kalhan SC. Use of 2H2O for estimating rates of gluconeogenesis. Application to the fasted state. J Clin Invest 1995; 95: 172178.
  • 20
    Burgess SC, Nuss M, Chandramouli V, Hardin DS, Rice M, Landau BR, et al. Analysis of gluconeogenic pathways in vivo by distribution of 2H in plasma glucose: comparison of nuclear magnetic resonance and mass spectrometry. Anal Biochem 2003; 318: 321324.
  • 21
    Burgess SC, Weis B, Jones JG, Smith E, Merritt ME, Margolis D, et al. Noninvasive evaluation of liver metabolism by 2H and 13C NMR isotopomer analysis of human urine. Anal Biochem 2003; 312: 228234.
  • 22
    Schleucher J, Vanderveer PJ, Sharkey TD. Export of carbon from chloroplasts at night. Plant Physiol 1998; 118: 14391445.
  • 23
    Jones JG, Naidoo R, Sherry AD, Jeffrey FM, Cottam GL, Malloy CR. Measurement of gluconeogenesis and pyruvate recycling in the rat liver: a simple analysis of glucose and glutamate isotopomers during metabolism of [1,2,3-(13)C3]propionate. FEBS Lett 1997; 412: 131137.
  • 24
    Sherry AD, Jeffrey FM, Malloy CR. Analytical solutions for 13C isotopomer analysis of complex metabolic conditions: substrate oxidation, multiple pyruvate cycles, and gluconeogenesis. Metab Eng 2004; 6: 1224.
  • 25
    Jin ES, Jones JG, Burgess SC, Merritt ME, Sherry AD, Malloy CR. Comparison of [3,4-13C2]glucose to [6,6-2H2]glucose as a tracer for glucose turnover by nuclear magnetic resonance. Magn Reson Med 2005; 53: 14791483.
  • 26
    Burgess SC, Leone TC, Wende AR, Croce MA, Chen Z, Sherry AD, et al. Diminished hepatic gluconeogenesis via defects in tricarboxylic acid cycle flux in peroxisome proliferator-activated receptor gamma coactivator-1alpha (PGC-1alpha)-deficient mice. J Biol Chem 2006; 281: 1900019008.
  • 27
    Satapati S, He T, Inagaki T, Potthoff M, Merritt ME, Esser V, et al. Partial resistance to PPAR{alpha} agonists in Zucker diabetic fatty (ZDF) rats is associated with defective hepatic mitochondrial metabolism. Diabetes 2008; doi: 10.2337/db08–0226.
  • 28
    Clore JN, Helm ST, Blackard WG. Loss of hepatic autoregulation after carbohydrate overfeeding in normal man. J Clin Invest 1995; 96: 19671972.
  • 29
    Eisenstein AB, Strack I, Steiner A. Increased hepatic gluconeogenesis without a rise of glucagon secretion in rats fed a high fat diet. Diabetes 1974; 23: 869875.
  • 30
    Cahill GF Jr. Starvation in man. N Engl J Med 1970; 282: 668675.
  • 31
    Bisschop PH, de Sain-van der Velden MGM, Stellaard F, Kuipers F, Meijer AJ, Sauerwein HP, et al. Dietary carbohydrate deprivation increases 24-hour nitrogen excretion without affecting postabsorptive hepatic or whole body protein metabolism in healthy men. J Clin Endocrinol Metab 2003; 88: 38013805.
  • 32
    Allick G, Bisschop PH, Ackermans MT, Endert E, Meijer AJ, Kuipers F, et al. A low-carbohydrate/high-fat diet improves glucoregulation in type 2 diabetes mellitus by reducing postabsorptive glycogenolysis. J Clin Endocrinol Metab 2004; 89: 61936197.
  • 33
    Clore JN, Glickman PS, Nestler JE, Blackard WG. In vivo evidence for hepatic autoregulation during FFA-stimulated gluconeogenesis in normal humans. Am J Physiol 1991; 261: E425E429.
  • 34
    Seidell JC. Obesity, insulin resistance and diabetes—a worldwide epidemic. Br J Nutr 2000; 83: S5S8.