SEARCH

SEARCH BY CITATION

References

  • 1
    Russell DW. The enzymes, regulation, and genetics of bile acid synthesis. Annu Rev Biochem 2003; 72: 137174.
  • 2
    Jelinek DF, Andersson S, Slaughter CA, Russell DW. Cloning and regulation of cholesterol 7α-hydroxylase, the rate-limiting enzyme in bile acid biosynthesis. J Biol Chem 1990; 265: 81908197.
  • 3
    Li YC, Wang DP, Chiang JY. Regulation of cholesterol 7 α-hydroxylase in the liver. Cloning, sequencing, and regulation of cholesterol 7α-hydroxylase mRNA. J Biol Chem 1990; 265: 1201212019.
  • 4
    Ramirez MI, Karaoglu D, Haro D, Barillas C, Bashirzadeh R, Gil G. Cholesterol and bile acids regulate cholesterol 7α-hydroxylase expression at the transcriptional level in culture and in transgenic mice. Mol Cell Biol 1994; 14: 28092821.
  • 5
    Lehmann JM, Kliewer SA, Moore LB, Smith-Oliver TA, Oliver BB, Su JL, et al. Activation of the nuclear receptor LXR by oxysterols defines a new hormone response pathway. J Biol Chem 1997; 272: 31373140.
  • 6
    Chiang JY, Kimmel R, Stroup D. Regulation of cholesterol 7α-hydroxylase gene (CYP7A1) transcription by the liver orphan receptor (LXRα). Gene 2001; 262: 257265.
  • 7
    Peet DJ, Turley SD, Ma W, Janowski BA, Lobaccaro JM, Hammer RE, et al. Cholesterol and bile acid metabolism are impaired in mice lacking the nuclear oxysterol receptor LXR alpha. Cell 1998; 93: 693704.
  • 8
    Chen W, Chen G, Head DL, Mangelsdorf DJ, Russell DW. Enzymatic reduction of oxysterols impairs LXR signaling in cultured cells and the livers of mice. Cell Metab 2007; 5: 7379.
  • 9
    Mitro N, Godio C, De Fabiani E, Scotti E, Galmozzi A, Gilardi F, et al. Insights in the regulation of cholesterol 7α-hydroxylase gene reveal a target for modulating bile acid synthesis. HEPATOLOGY 2007; 46: 885897.
  • 10
    Crestani M, Sadeghpour A, Stroup D, Galli G, Chiang JY. Transcriptional activation of the cholesterol 7α-hydroxylase gene (CYP7A) by nuclear hormone receptors. J Lipid Res 1998; 39: 21922200.
  • 11
    Stroup D, Crestani M, Chiang JY. Orphan receptors chicken ovalbumin upstream promoter transcription factor II (COUP-TFII) and retinoid X receptor (RXR) activate and bind the rat cholesterol 7α-hydroxylase gene (CYP7A). J Biol Chem 1997; 272: 98339839.
  • 12
    Goodwin B, Jones SA, Price RR, Watson MA, McKee DD, Moore LB, et al. A regulatory cascade of the nuclear receptors FXR, SHP-1, and LRH-1 represses bile acid biosynthesis. Mol Cell 2000; 6: 517526.
  • 13
    del Castillo-Olivares A, Gil G. Role of FXR and FTF in bile acid-mediated suppression of cholesterol 7α-hydroxylase transcription. Nucleic Acids Res 2000; 28: 35873593.
  • 14
    Lu TT, Makishima M, Repa JJ, Schoonjans K, Kerr TA, Auwerx J, et al. Molecular basis for feedback regulation of bile acid synthesis by nuclear receptors. Mol Cell 2000; 6: 507515.
  • 15
    Song KH, Ellis E, Strom S, Chiang JY. Hepatocyte growth factor signaling pathway inhibits cholesterol 7α-hydroxylase and bile acid synthesis in human hepatocytes. HEPATOLOGY 2007; 46: 19932002.
  • 16
    Holt JA, Luo G, Billin AN, Bisi J, McNeill YY, Kozarsky KF, et al. Definition of a novel growth factor-dependent signal cascade for the suppression of bile acid biosynthesis. Genes Dev 2003; 17: 15811591.
  • 17
    Inagaki T, Choi M, Moschetta A, Peng L, Cummins CL, McDonald JG, et al. Fibroblast growth factor 15 functions as an enterohepatic signal to regulate bile acid homeostasis. Cell Metab 2005; 2: 217225.
  • 18
    Yu C, Wang F, Jin C, Huang X, McKeehan WL. Independent repression of bile acid synthesis and activation of c-Jun N-terminal kinase (JNK) by activated hepatocyte fibroblast growth factor receptor 4 (FGFR4) and bile acids. J Biol Chem 2005; 280: 1770717714.
  • 19
    Song K-H, Li T, Owsley E, Strom S, Chiang JYL. Bile acids activate fibroblast growth factor 19 signaling in human hepatocytes to inhibit cholesterol 7α-hydroxylase gene expression. HEPATOLOGY 2009; 49: 297305.
  • 20
    Wooton-Kee CR, Cohen DE, Vore M. Increased cholesterol 7α-hydroxylase expression and size of the bile acid pool in the lactating rat. Am J Physiol Gastrointest Liver Physiol 2008; 294: G10091016.
  • 21
    Ganguly TC, O'Brien ML, Karpen SJ, Hyde JF, Such FJ, Vore M. Regulation of the rat liver sodium-dependent bile acid cotransporter gene by prolactin. J Clin Invest 1997; 99: 29062914.
  • 22
    Cao H, Huang L, Liu Y, Hoffman T, Stieger B, Meier PJ, et al. Differential regulation of hepatic bile salt and organic anion transporters in pregnant and postpartum rats and the role of prolactin. HEPATOLOGY 2001; 33: 140147.
  • 23
    Wells J, Farnham PJ. Characterizing transcription factor binding sites using formaldehyde crosslinking and immunoprecipitation. Methods 2002; 26: 4856.
  • 24
    DeMartino MU, Bhattachryya N, Alesci S, Ichijo T, Chrousos GP, Kino T. The glucocorticoid receptor and the orphan nuclear receptor chicken ovalbumin upstream promoter-transcription factor II interact with and mutually affect each other's transcriptional activities: implications for intermediary metabolism. Mol Endocrinol 2004; 18: 820833.
  • 25
    Liu C, Li S, Liu T, Borjigin J, Lin JD. Transcriptional coactivator PGC-1α integrates the mammalian clock and energy metabolism. Nature 2007; 447: 477481.
  • 26
    Reddy AB, Maywood ES, Karp NA, King VM, Inoue Y, Gonzalez FJ, et al. Glucocorticoid signaling synchronizes the liver circadian transcriptome. HEPATOLOGY 2007; 45: 14781488.
  • 27
    Li T, Jahan A, Chiang JY. Bile acids and cytokines inhibit the human cholesterol 7α-hydroxylase gene via the JNK/c-jun pathway in human liver cells. HEPATOLOGY 2006; 43: 12021210.
  • 28
    Wang L, Lee YK, Bundman D, Han Y, Thevananther S, Kim CS, et al. Redundant pathways for negative feedback regulation of bile acid production. Dev Cell 2002; 2: 721731.
  • 29
    Yang X, Downes M, Yu RT, Bookout AL, He W, Straume M, et al. Nuclear receptor expression links the circadian clock to metabolism. Cell 2006; 126: 801810.
  • 30
    Oiwa A, Kakizawa T, Miyamoto T, Yamashita K, Jiang W, Takeda T, et al. Synergistic regulation of the mouse orphan nuclear receptor SHP gene promoter by CLOCK-BMAL1 and LRH-1. Biochem Biophys Res Commun 2007; 353: 895901.
  • 31
    Kim I, Ahn SH, Inagaki T, Choi M, Ito S, Guo GL, et al. Differential regulation of bile acid homeostasis by the farnesoid X receptor in liver and intestine. J Lipid Res 2007; 48: 26642672.
  • 32
    Gibbons GF, Pullinger CR, Munday MR, Williamson DH. Regulation of cholesterol synthesis in the liver and mammary gland of the lactating rat. Biochem J 1983; 212: 843848.
  • 33
    Feingold KR, Moser AH. Effect of lactation on cholesterol synthesis in rats. Am J Physiol 1985; 249: G203208.
  • 34
    Clarenburg R, Chaikoff IL. Origin of milk cholesterol in the rat: dietary versus endogenous sources. J Lipid Res 1966; 7: 2737.
  • 35
    Chiang JYL. Bile acids: regulation of synthesis. J Lipid Res 2009; 50: 19551966.
  • 36
    Kerr TA, Saeki S, Schnieder M, Schaefer K, Berdy S, Redder T, et al. Loss of nuclear receptor SHP imparis but does not eliminate negative feedback regulation of bile acid synthesis. Dev Cell 2002; 2: 713720.
  • 37
    Sinha J, Chen F, Miloh T, Burns RC, Yu Z, Shneider BL. β-Klotho and FGF15/19 inhibit the apical sodium dependent bile acid transporter in enterocytes and cholangiocytes. Am J Physiol Gastrointest Liver Physiol 2008; 295: G996G1003.
  • 38
    Mottino AD, Hoffman T, Dawson PA, Luquita MG, Monti JA, Sanchez Pozzi EJ, et al. Increased expression of ileal apical sodium-dependent bile acid transporter in postpartum rats. Am J Physiol Gastrointest Liver Physiol 2002; 282: G41G50.
  • 39
    Vernon RG, Denis RGP, Sorensen A, Williams G. Leptin and the adaptations of lactation in rodents and ruminants. Horm Metab Res 2002; 34: 678685.
  • 40
    Fu L, John LM, Adams SH, Yu XX, Tomlinson E, Renz M, et al, Fibroblast growth factor 19 increases metabolic rate and reverses dietary and leptin-deficient diabetes. Endocrinology 2004; 145: 25942603.
  • 41
    Perdomo G, Martinez-Brocca MA, Bhatt BA, Brown NF, O'Doherty RM, Garcia-Ocana A. Hepatocyte growth factor is a novel stimulator of glucose uptake and metabolism in skeletal muscle cells. J Biol Chem 2008; 283: 1370013706.
  • 42
    Itoh H, Itakura A, Kurauchi O, Okamura M, Nakamura H, Mizutani S. Hepatocyte growth factor in human breast milk acts as a trophic factor. Horm Metab Res. 2002; 34: 1620.
  • 43
    Pepper MS, Soriano JV, Menoud PA, Sappino AP, Orci L, Montesano R. Modulation of hepatocyte growth factor and c-met in the rat mammary gland during pregnancy, lactation, and involution. Exp Cell Res 1995; 219: 20410.
  • 44
    Mottino AD, Hoffman T, Jennes L, Cao J, Vore M. Expression of multidrug resistance-associated protein 2 in small intestine form pregnant and postpartum rats. Am J Physiol Gastrointest Liver Physiol 2001; 280: G1261G1273.