• 1
    Pisani P, Parkin DM, Ferlay J. Estimates of the worldwide mortality from eighteen major cancers in 1985. Implications for prevention and projections of future burden. Int J Cancer 1993; 55: 891-903.
  • 2
    Weiss RB. The anthracyclines: will we ever find a better doxorubicin? Semin Oncol 1992; 19: 670-686.
  • 3
    Minotti G, Menna P, Salvatorelli E, Cairo G, Gianni L. Anthracyclines: molecular advances and pharmacologic developments in antitumor activity and cardiotoxicity. Pharmacol Rev 2004; 56: 185-229.
  • 4
    Zucchi R, Danesi R. Cardiac toxicity of antineoplastic anthracyclines. Curr Med Chem Anticancer Agents 2003; 3: 151-171.
  • 5
    Endicott JA, Ling V. The biochemistry of P-glycoprotein-mediated multidrug resistance. Annu Rev Biochem 1989; 58: 137-171.
  • 6
    Toffoli G, Simone F, Gigante M, Boiocchi M. Comparison of mechanisms responsible for resistance to idarubicin and daunorubicin in multidrug resistant LoVo cell lines. Biochem Pharmacol 1994; 48: 1871-1881.
  • 7
    Kuffel MJ, Reid JM, Ames MM. Anthracyclines and their C-13 alcohol metabolites: growth inhibition and DNA damage following incubation with human tumor cells in culture. Cancer Chemother Pharmacol 1992; 30: 51-57.
  • 8
    Licata S, Saponiero A, Mordente A, Minotti G. Doxorubicin metabolism and toxicity in human myocardium: role of cytoplasmic deglycosidation and carbonyl reduction. Chem Res Toxicol 2000; 13: 414-420.
  • 9
    Bae JH, Schwaiger M, Mandelkern M, Lin A, Schelbert HR. Doxorubicin cardiotoxicity: response of left ventricular ejection fraction to exercise and incidence of regional wall motion abnormalities. Int J Card Imaging 1988; 3: 193-201.
  • 10
    Forrest GL, Gonzalez B, Tseng W, Li X, Mann J. Human carbonyl reductase overexpression in the heart advances the development of doxorubicin-induced cardiotoxicity in transgenic mice. Cancer Res 2000; 60: 5158-5164.
  • 11
    Forrest GL, Gonzalez B. Carbonyl reductase. Chem Biol Interact 2000; 129: 21-40.
  • 12
    Wirth H, Wermuth B. Immunohistochemical localization of carbonyl reductase in human tissues. J Histochem Cytochem 1992; 40: 1857-1863.
  • 13
    Plebuch M, Soldan M, Hungerer C, Koch L, Maser E. Increased resistance of tumor cells to daunorubicin after transfection of cDNAs coding for anthracycline inactivating enzymes. Cancer Lett 2007; 255: 49-56.
  • 14
    Gonzalez B, Akman S, Doroshow J, Rivera H, Kaplan WD, Forrest GL. Protection against daunorubicin cytotoxicity by expression of a cloned human carbonyl reductase cDNA in K562 leukemia cells. Cancer Res 1995; 55: 4646-4650.
  • 15
    Ax W, Soldan M, Koch L, Maser E. Development of daunorubicin resistance in tumour cells by induction of carbonyl reduction. Biochem Pharmacol 2000; 59: 293-300.
  • 16
    Slupe A, Williams B, Larson C, Lee LM, Primbs T, Bruesch AJ, et al. Reduction of 13-deoxydoxorubicin and daunorubicinol anthraquinones by human carbonyl reductase. Cardiovasc Toxicol 2005; 5: 365-376.
  • 17
    Propper D, Maser E. Carbonyl reduction of daunorubicin in rabbit liver and heart. Pharmacol Toxicol 1997; 80: 240-245.
  • 18
    Rosemond MJ, Walsh JS. Human carbonyl reduction pathways and a strategy for their study in vitro. Drug Metab Rev 2004; 36: 335-361.
  • 19
    Varma SD, Mikuni I, Kinoshita JH. Flavonoids as inhibitors of lens aldose reductase. Science 1975; 188: 1215-1216.
  • 20
    Tanaka M, Bateman R, Rauh D, Vaisberg E, Ramachandani S, Zhang C, et al. An unbiased cell morphology-based screen for new, biologically active small molecules. PLoS Biol 2005; 3: e128.
  • 21
    Chung JY, Huang C, Meng X, Dong Z, Yang CS. Inhibition of activator protein 1 activity and cell growth by purified green tea and black tea polyphenols in H-ras-transformed cells: structure-activity relationship and mechanisms involved. Cancer Res 1999; 59: 4610-4617.
  • 22
    Chen ZP, Schell JB, Ho CT, Chen KY. Green tea epigallocatechin gallate shows a pronounced growth inhibitory effect on cancerous cells but not on their normal counterparts. Cancer Lett 1998; 129: 173-179.
  • 23
    Fogli S, Danesi R, Innocenti F, Di Paolo A, Bocci G, Barbara C, et al. An improved HPLC method for therapeutic drug monitoring of daunorubicin, idarubicin, doxorubicin, epirubicin, and their 13-dihydro metabolites in human plasma. Ther Drug Monit 1999; 21: 367-375.
  • 24
    Usami N, Kitahara K, Ishikura S, Nagano M, Sakai S, Hara A. Characterization of a major form of human isatin reductase and the reduced metabolite. Eur J Biochem 2001; 268: 5755-5763.
  • 25
    Tachibana H, Koga K, Fujimura Y, Yamada K. A receptor for green tea polyphenol EGCG. Nat Struct Mol Biol 2004; 11: 380-381.
  • 26
    Leone M, Zhai D, Sareth S, Kitada S, Reed JC, Pellecchia M. Cancer prevention by tea polyphenols is linked to their direct inhibition of antiapoptotic Bcl-2-family proteins. Cancer Res 2003; 63: 8118-8121.
  • 27
    Ermakova S, Choi BY, Choi HS, Kang BS, Bode AM, Dong Z. The intermediate filament protein vimentin is a new target for epigallocatechin gallate. J Biol Chem 2005; 280: 16882-16890.
  • 28
    Li M, He Z, Ermakova S, Zheng D, Tang F, Cho YY, et al. Direct inhibition of insulin-like growth factor-I receptor kinase activity by (−)-epigallocatechin-3-gallate regulates cell transformation. Cancer Epidemiol Biomarkers Prev 2007; 16: 598-605.
  • 29
    He Z, Tang F, Ermakova S, Li M, Zhao Q, Cho YY, et al. Fyn is a novel target of (−)-epigallocatechin gallate in the inhibition of JB6 Cl41 cell transformation. Mol Carcinog 2008; 47: 172-183.
  • 30
    Ermakova SP, Kang BS, Choi BY, Choi HS, Schuster TF, Ma WY, et al. (−)-Epigallocatechin gallate overcomes resistance to etoposide-induced cell death by targeting the molecular chaperone glucose-regulated protein 78. Cancer Res 2006; 66: 9260-9269.
  • 31
    Shim JH, Choi HS, Pugliese A, Lee SY, Chae JI, Choi BY, et al. (−)-Epigallocatechin gallate regulates CD3-mediated T cell receptor signaling in leukemia through the inhibition of ZAP-70 kinase. J Biol Chem 2008; 283: 28370-28379.
  • 32
    Nishikawa T, Nakajima T, Moriguchi M, Jo M, Sekoguchi S, Ishii M, et al. A green tea polyphenol, epigalocatechin-3-gallate, induces apoptosis of human hepatocellular carcinoma, possibly through inhibition of Bcl-2 family proteins. J Hepatol 2006; 44: 1074-1082.
  • 33
    Shirakami Y, Shimizu M, Adachi S, Sakai H, Nakagawa T, Yasuda Y, et al. (−)-Epigallocatechin gallate suppresses the growth of human hepatocellular carcinoma cells by inhibiting activation of the vascular endothelial growth factor-vascular endothelial growth factor receptor axis. Cancer Sci 2009; 100: 1957-1962.
  • 34
    Suto K, Kajihara-Kano H, Yokoyama Y, Hayakari M, Kimura J, Kumano T, et al. Decreased expression of the peroxisomal bifunctional enzyme and carbonyl reductase in human hepatocellular carcinomas. J Cancer Res Clin Oncol 1999; 125: 83-88.
  • 35
    Kajihara-Kano H, Hayakari M, Satoh K, Tomioka Y, Mizugaki M, Tsuchida S. Characterization of S-hexylglutathione-binding proteins of human hepatocellular carcinoma: separation of enoyl-CoA isomerase from an alpha class glutathione transferase form. Biochem J 1997;328(pt 2): 473-478.