• 1
    Khan SA, Thomas HC, Davidson BR, Taylor-Robinson SD. Cholangiocarcinoma. Lancet 2005; 366: 1303-1314.
  • 2
    Demols A, Marechal R, Deviere J, Van Laethem JL. The multidisciplinary management of gastrointestinal cancer. Biliary tract cancers: from pathogenesis to endoscopic treatment. Best Pract Res Clin Gastroenterol 2007; 21: 1015-1029.
  • 3
    Weismuller TJ, Wedemeyer J, Kubicka S, Strassburg CP, Manns MP. The challenges in primary sclerosing cholangitis—aetiopathogenesis, autoimmunity, management and malignancy. J Hepatol 2008; 48 Suppl 1: S38-57.
  • 4
    Park MS, Kim TK, Kim KW, Park SW, Lee JK, Kim JS, et al. Differentiation of extrahepatic bile duct cholangiocarcinoma from benign stricture: findings at MRCP versus ERCP. Radiology 2004; 233: 234-240.
  • 5
    Rosch T, Meining A, Fruhmorgen S, Zillinger C, Schusdziarra V, Hellerhoff K, et al. A prospective comparison of the diagnostic accuracy of ERCP, MRCP, CT, and EUS in biliary strictures. Gastrointest Endosc 2002; 55: 870-876.
  • 6
    de Bellis M, Fogel EL, Sherman S, Watkins JL, Chappo J, Younger C, et al. Influence of stricture dilation and repeat brushing on the cancer detection rate of brush cytology in the evaluation of malignant biliary obstruction. Gastrointest Endosc 2003; 58: 176-182.
  • 7
    Boberg KM, Jebsen P, Clausen OP, Foss A, Aabakken L, Schrumpf E. Diagnostic benefit of biliary brush cytology in cholangiocarcinoma in primary sclerosing cholangitis. J Hepatol 2006; 45: 568-574.
  • 8
    Tischendorf JJ, Hecker H, Kruger M, Manns MP, Meier PN. Characterization, outcome, and prognosis in 273 patients with primary sclerosing cholangitis: A single center study. Am J Gastroenterol 2007; 102: 107-114.
    Direct Link:
  • 9
    Bergquist A, Ekbom A, Olsson R, Kornfeldt D, Loof L, Danielsson A, et al. Hepatic and extrahepatic malignancies in primary sclerosing cholangitis. J Hepatol 2002; 36: 321-327.
  • 10
    Walker SL, McCormick PA. Diagnosing cholangiocarcinoma in primary sclerosing cholangitis: an “evidence based radiology” review. Abdom Imaging 2008; 33: 14-17.
  • 11
    Ohshio G, Manabe T, Watanabe Y, Endo K, Kudo H, Suzuki T, et al. Comparative studies of DU-PAN-2, carcinoembryonic antigen, and CA19-9 in the serum and bile of patients with pancreatic and biliary tract diseases: evaluation of the influence of obstructive jaundice. Am J Gastroenterol 1990; 85: 1370-1376.
  • 12
    Ker CG, Chen JS, Lee KT, Sheen PC, Wu CC. Assessment of serum and bile levels of CA19-9 and CA125 in cholangitis and bile duct carcinoma. J Gastroenterol Hepatol 1991; 6: 505-508.
  • 13
    Farina A, Dumonceau JM, Frossard JL, Hadengue A, Hochstrasser DF, Lescuyer P. Proteomic analysis of human bile from malignant biliary stenosis induced by pancreatic cancer. J Proteome Res 2009; 8: 159-169.
  • 14
    Farina A, Dumonceau JM, Lescuyer P. Proteomic analysis of human bile and potential applications for cancer diagnosis. Expert Rev Proteomics 2009; 6: 285-301.
  • 15
    Gronborg M, Bunkenborg J, Kristiansen TZ, Jensen ON, Yeo CJ, Hruban RH, Maitra A, et al. Comprehensive proteomic analysis of human pancreatic juice. J Proteome Res 2004; 3: 1042-1055.
  • 16
    Guerrier L, Claverol S, Finzi L, Paye F, Fortis F, Boschetti E, Housset C. Contribution of solid-phase hexapeptide ligand libraries to the repertoire of human bile proteins. J Chromatogr A 2007; 1176: 192-205.
  • 17
    Kristiansen TZ, Bunkenborg J, Gronborg M, Molina H, Thuluvath PJ, Argani P, Goggins MG, et al. A proteomic analysis of human bile. Mol Cell Proteomics 2004; 3: 715-728.
  • 18
    Zhou H, Chen B, Li RX, Sheng QH, Li SJ, Zhang L, Li L, et al. Large-scale identification of human biliary proteins from a cholesterol stone patient using a proteomic approach. Rapid Commun Mass Spectrom 2005; 19: 3569-3578.
  • 19
    Theodorescu D, Wittke S, Ross MM, Walden M, Conaway M, Just I, Mischak H, et al. Discovery and validation of new protein biomarkers for urothelial cancer: a prospective analysis. Lancet Oncol 2006; 7: 230-240.
  • 20
    Metzger J, Schanstra JP, Mischak H. Capillary electrophoresis-mass spectrometry in urinary proteome analysis: current applications and future developments. Anal Bioanal Chem 2009; 393: 1431-1442.
  • 21
    Negm AA, Schott A, Vonberg RP, Weismueller TJ, Schneider AS, Kubicka S, Strassburg CP, et al. Routine bile collection for microbiological analysis during cholangiography and its impact on the management of cholangitis. Gastrointest Endosc; 72: 284-291.
  • 22
    Kolch W, Neususs C, Pelzing M, Mischak H. Capillary electrophoresis-mass spectrometry as a powerful tool in clinical diagnosis and biomarker discovery. Mass Spectrom Rev 2005; 24: 959-977.
  • 23
    Wittke S, Fliser D, Haubitz M, Bartel S, Krebs R, Hausadel F, Hillmann M, et al. Determination of peptides and proteins in human urine with capillary electrophoresis-mass spectrometry, a suitable tool for the establishment of new diagnostic markers. J Chromatogr A 2003; 1013: 173-181.
  • 24
    Neuhoff N, Kaiser T, Wittke S, Krebs R, Pitt A, Burchard A, Sundmacher A, et al. Mass spectrometry for the detection of differentially expressed proteins: a comparison of surface-enhanced laser desorption/ionization and capillary electrophoresis/mass spectrometry. Rapid Commun Mass Spectrom 2004; 18: 149-156.
  • 25
    DeLeo J. Receiver operating characteristic laboratory (ROCLAB): software for developing decision strategies that account for uncertainty. College Park, MD: Second International Symposium on Uncertainty Modeling and Analysis 1993: 318-325.
  • 26
    Rappsilber J, Ishihama Y, Mann M. Stop and go extraction tips for matrix-assisted laser desorption/ionization, nanoelectrospray, and LC/MS sample pretreatment in proteomics. Anal Chem 2003; 75: 663-670.
  • 27
    Gruhler A, Olsen JV, Mohammed S, Mortensen P, Faergeman NJ, Mann M, et al. Quantitative phosphoproteomics applied to the yeast pheromone signaling pathway. Mol Cell Proteomics 2005; 4: 310-327.
  • 28
    Zurbig P, Renfrow MB, Schiffer E, Novak J, Walden M, Wittke S, et al. Biomarker discovery by CE-MS enables sequence analysis via MS/MS with platform-independent separation. Electrophoresis 2006; 27: 2111-2125.
  • 29
    Zimmerli LU, Schiffer E, Zurbig P, Good DM, Kellmann M, Mouls L, et al. Urinary proteomic biomarkers in coronary artery disease. Mol Cell Proteomics 2008; 7: 290-298.
  • 30
    Bonney GK, Craven RA, Prasad R, Melcher AF, Selby PJ, Banks RE. Circulating markers of biliary malignancy: opportunities in proteomics? Lancet Oncol 2008; 9: 149-158.
  • 31
    Koopmann J, Thuluvath PJ, Zahurak ML, Kristiansen TZ, Pandey A, Schulick R, et al. Mac-2-binding protein is a diagnostic marker for biliary tract carcinoma. Cancer 2004; 101: 1609-1615.
  • 32
    Alvaro D, Macarri G, Mancino MG, Marzioni M, Bragazzi M, Onori P, et al. Serum and biliary insulin-like growth factor I and vascular endothelial growth factor in determining the cause of obstructive cholestasis. Ann Intern Med 2007; 147: 451-459.
  • 33
    Anderson NL, Anderson NG. The human plasma proteome — history, character, and diagnostic prospects. Mol Cell Proteom 2002; 1: 845-867.
  • 34
    He C, Fischer S, Meyer G, Muller I, Jungst D. Two-dimensional electrophoretic analysis of vesicular and micellar proteins of gallbladder bile. J Chromatogr A 1997; 776: 109-115.
  • 35
    Gaspar A, Englmann M, Fekete A, Harir M, Schmitt-Kopplin P. Trends in CE-MS 2005-2006. Electrophoresis 2008; 29: 66-79.
  • 36
    Correale M, Brunetti ND, De Gennaro L, Di Biase M. Acute phase proteins in atherosclerosis (acute coronary syndrome). Cardiovasc Hematol Agents Med Chem 2008; 6: 272-277.
  • 37
    Coutts AS, Weston L, La Thangue NB. Actin nucleation by a transcription co-factor that links cytoskeletal events with the p53 response. Cell Cycle 2010; 19: 9.
  • 38
    Zhuo L, Kimata K. Structure and function of inter-alpha-trypsin inhibitor heavy chains. Connect Tissue Res 2008; 49: 311-320.
  • 39
    Hermeking H. The 14-3-3 cancer connection. Nat Rev Cancer 2003; 3: 931-943.
  • 40
    Hou Z, Peng H, White DE, Wang P, Lieberman PM, Halazonetis T, et al. 14-3-3 binding sites in the snail protein are essential for snail-mediated transcriptional repression and epithelial-mesenchymal differentiation. Cancer Res; 70: 4385-4393.
  • 41
    Kalluri R, Neilson EG. Epithelial-mesenchymal transition and its implications for fibrosis. J Clin Invest 2003; 112: 1776-1784.
  • 42
    Lee MJ, Yu GR, Yoo HJ, Kim JH, Yoon BI, Choi YK, et al. ANXA8 down-regulation by EGF-FOXO4 signaling is involved in cell scattering and tumor metastasis of cholangiocarcinoma. Gastroenterology 2009; 137: 1138-1150, 1150 e1131-1139.
  • 43
    Sato Y, Harada K, Itatsu K, Ikeda H, Kakuda Y, Shimomura S, et al. Epithelial-mesenchymal transition induced by transforming growth factor-{beta>1/snail activation aggravates invasive growth of cholangiocarcinoma. Am J Pathol 2010; 177: 141-152.
  • 44
    Alvaro D. Serum and bile biomarkers for cholangiocarcinoma. Curr Opin Gastroenterol 2009; 25: 279-284.
  • 45
    Charatcharoenwitthaya P, Enders FB, Halling KC, Lindor KD. Utility of serum tumor markers, imaging, and biliary cytology for detecting cholangiocarcinoma in primary sclerosing cholangitis. Hepatology 2008; 48: 1106-1117.