Toll-like receptor 4 and myeloid differentiation factor 88 provide mechanistic insights into the cause and effects of interleukin-6 activation in mouse liver regeneration


  • Potential conflict of interest: Nothing to report.

    This article first published online ahead of print on 26 Jun 2011, and has since been updated for print. Dr. McMahan's name had been incorrectly spelled in the online-ahead-of-print version.

  • This work was funded by the National Institutes of Health (Bethesda, MD) grants CA-23226, CA-174131, and CA-127228 (to N.F. and J.S.C.), NIEHS training program T32ES007032 predoctoral fellowship (to R.S.M.), and a Fulbright/MEC postdoctoral fellowship 2007/0564 from Spain (to J.V.).


Partial hepatectomy (PH) consistently results in an early increase of circulating interleukin-6 (IL-6), which is thought to play a major role in liver regeneration. Activation of this cytokine after PH requires the adaptor protein, MyD88, but the specific MyD88-related receptors involved remain unidentified. It is also unknown whether the magnitude of IL-6 elevation determines the extent of subsequent hepatocyte proliferation. Here, we uncovered artifacts in the assessment of circulating IL-6 levels when using cardiac puncture in mice after PH. By using retro-orbital bleed sampling, we show that the circulating levels of IL-6 after PH were not directly correlated with the extent of hepatocyte DNA synthesis in individual mice. The IL-6 increase after PH was attenuated in all lipopolysaccharide-hyporesponsive mouse strains studied (e.g., C3H/HeJ, Tlr4 null, Cd14 null, Tlr2,4,9 null, and Tlr2,4-Caspase1 null) and was severely abrogated in Myd88 null mice. Despite attenuated IL-6 levels, Tlr4 null mice showed normal signaling downstream of IL-6 and normal hepatocyte proliferation. In contrast, Myd88 null mice showed severe impairments in signal transducer and activator of transcription 3 phosphorylation and Socs3 induction, but had enhanced and prolonged extracellular signal-related kinase 1 and 2 phosphorylation in the first 6 hours after PH. Unexpectedly, these changes were associated with accelerated initiation of hepatocyte proliferation, as assessed by hepatocyte bromodeoxyuridine incorporation, phospho-histone H3 immunostaining, and cyclin E and A protein expression. Conclusion: TLR-4 signaling contributes to IL-6 activation after PH, but the Tlr4-independent component appears sufficient for ensuring intact signaling downstream of IL-6. The lack of correlation between IL-6 levels and hepatocyte proliferation after PH, and the accelerated start of hepatocyte proliferation in Myd88 null mice despite abrogated cytokine activation, may highlight relevant antiproliferative effects of IL-6 signaling, possibly via Socs3, in the regulation of liver regeneration. (HEPATOLOGY 2011;)