SEARCH

SEARCH BY CITATION

Abstract

  1. Top of page
  2. Abstract
  3. Materials and Methods
  4. Results
  5. Discussion
  6. References
  7. Supporting Information

Loss of signal transducer and activator of transcription 5 (STAT5) from liver tissue results in steatosis and enhanced cell proliferation. This study demonstrates that liver-specific Stat5-null mice develop severe hepatic steatosis as well as hepatocellular carcinomas at 17 months of age, even in the absence of chemical insults. To understand STAT5′s role as a tumor suppressor, we identified and investigated new STAT5 target genes. Expression of Nox4, the gene encoding the reactive oxygen species (ROS)-generating enzyme NOX4, was induced by growth hormone through STAT5. In addition, the genes encoding the proapoptotic proteins PUMA and BIM were induced by growth hormone through STAT5, which bound to GAS motifs in the promoter regions of all three genes. We further show that STAT5-induced activation of Puma and Bim was dependent on NOX4. Treatment of mice with transforming growth factor-β, an inducer of apoptosis, resulted in cleaved caspase-3 in control but not in liver-specific Stat5-null mice. This study demonstrates for the first time that cytokines through STAT5 regulate the expression of the ROS-generating enzyme NOX4 and key proapoptotic proteins. Conclusion: STAT5 harnesses several distinct signaling pathways in the liver and thereby functions as a tumor suppressor. Besides suppressing the activation of STAT3, STAT5 induces the expression of proapoptotic genes and the production of ROS. (HEPATOLOGY 2012;56:2375–2386)

Signal transducers and activators of transcription (STAT) 5A and 5B are latent transcription factors that are induced by a plethora of cytokines, including growth hormone, prolactin and several interleukins.1 Recently, context-specific tumor suppressor functions have been associated with STAT5, such as inhibiting expression of NPM1-ALK2 and suppressing STAT3 and transforming growth factor-β (TGF-β) activity in the liver.3 Although active STAT5 has been detected in many human tumors, constitutively active STAT5A induces senescence in normal cells.4 In particular, SOCS1 expression induced by aberrant STAT5 signaling can facilitate the process of cellular senescence, which is an important tumor suppressor mechanism.5

Mice from which the Stat5a/b locus has been deleted specifically in liver tissue displayed altered metabolic pathways and developed fatty liver (nonalcoholic steatohepatitis).6, 7 Treatment of these mice with CCl4 led to liver fibrosis and hepatocellular carcinoma (HCC), suggesting that STAT5 is a tumor suppressor.3 Aberrant activation of the TGF-β and STAT3 pathways in these mice appears to contribute to the CCl4-induced fibrosis and HCC.3

Defects in apoptosis can be pivotal contributors to the development of cancer and the impaired response of tumor cells to therapy.8 The extent to which STAT5 regulates apoptotic mechanism in liver tissue is unclear. The proapoptotic BH3-only proteins PUMA, BIM, and BID are essential for the activation of BAX- and BAK-dependent cell death programs.9 PUMA expression is reduced in melanoma tumor tissue,10 and loss of PUMA dramatically accelerated myc-induced lymphomagenesis in vivo.11 Concomitant loss of PUMA and BIM in respective knockout mice exacerbated hyperplasia of lymphatic organs and promoted spontaneous malignancies.12 Loss of PUMA- and BAX/BAK-dependent apoptosis also enhanced tumorigenesis in a hypoxia-induced tumor model.13 In the liver, JNK1-dependent PUMA expression induced hepatocyte lipoapoptosis.14 Moreover, BIM and PUMA induction and BAX activation by palmitate induced apoptosis in hepatocytes.15 BIM and BID are critical contributors in hepatocyte apoptosis caused by TNF-β in vivo.16 TNF-β can cooperate with FasL to induce hepatocyte apoptosis by activating BIM and BID.17 These results demonstrate that PUMA and BIM can function as tumor suppressors in mice.

Recent studies have demonstrated that NOX4 as a source of oxidative stress promotes apoptosis in vascular endothelial cells18 and hepatocytes,19 mitochondrial dysfunction in cardiac myocytes,20, 21 and cellular senescence in hepatocytes.22

To further understand STAT5′s role as a liver-specific tumor suppressor, we identified novel STAT5 target genes in liver and mouse embryonic fibroblasts. This study explores for the first time the link between STAT5 and NOX4 and the apoptotic proteins PUMA and BIM.

Materials and Methods

  1. Top of page
  2. Abstract
  3. Materials and Methods
  4. Results
  5. Discussion
  6. References
  7. Supporting Information

Mouse Breeding.

Stat5f/f;Alb-Cre mice were generated by breeding Stat5f/f mice with Alb-Cre transgenic mice.23Stat5f/f and Alb-Cre transgenic mice were on a mixed background. Only 8- to 68-week-old male mice were used in the experiments unless indicated otherwise. Animals were treated humanely, and experiments and procedures were performed according to the protocol approved by the Animal Use and Care Committee at the National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK).

Liver Induced by CCl4 or Growth Hormone.

Hepatic fibrosis in mice was induced by intraperitoneal injection with 2 mL/kg body weight of 10% CCl4 (Sigma, St. Louis, MO) dissolved in olive oil (Sigma, St. Louis, MO) three times per week for 12 weeks. For growth hormone (GH) stimulation, mice were injected intraperitoneally with GH (2 μg/g body weight) (mouse GH, National Hormone and Peptide Program, NIDDK). Mice were euthanized 4 hours after injection, and livers were harvested for analyses.

Cell Culture.

Mouse hepatocyte AML12 cells were obtained from American Type Culture Collection (Manassas, VA) and cultured in a 1:1 mixture of Dulbecco's modified Eagle's medium and Ham's F12 medium supplemented with 10% fetal bovine serum, 5 μg/mL insulin, 5 μg/mL transferrin, 5 ng/mL selenium, and 40 ng/mL dexamethasone at 37°C with 5% CO2.

Antibodies, Immunoblotting, and Immunostaining.

In brief, liver tissue was lysed by adding NuPAGE LDS Sample buffer (Invitrogen, Carlsbad, CA). Western blotting was performed according to the manufacturer's instructions (Invitrogen). The rabbit polyclonal anti-STAT5 (C-17), anti-STAT3 (C-20), anti–β-actin antibodies (Santa Cruz Biotechnology, Santa Cruz, CA), anti–phospho-STAT5, anti–phospho-STAT3 (Cell Signaling Technology, Beverly, MA), anti-NOX4 (Novus Biologicals, Littleton, CO), anti-PUMA (Abcam, Cambridge, MA), and anti-BIM (Cell Signaling Technology) were used for probing western blots. Immunohistochemistry was performed using standard procedures. In short, liver tissues were removed and fixed in 10% neutral buffered formalin and embedded in paraffin wax. Five-micrometer sections were prepared for hematoxylin and eosin staining and immunofluorescence analyses. After deparaffinization, antigen unmasking was performed in a decloaking chamber (Biocare Medical, San Diego, CA) using BORG Decloaker Solution (Biocare Medical, San Diego, CA) for 5 minutes at 125°C. The sections were blocked for 30 minutes in Tris-buffered saline/Tween 20 buffer containing 3% goat serum. Primary antibodies used in this study included rabbit anti–phospho-STAT5 (Tyr694), anti-cleaved caspase-3 (Cell Signaling Technology), rabbit anti-NOX4 (Novus Biologicals, Littleton, CO), rabbit anti-PUMA (Abcam, Cambridge, MA), anti-BIM (Cell Signaling Technology), anti–phospho-histone H3 (Upstate Biotechnology, Lake Placid, NY), and anti-Ki 67 (Santa Cruz Biotechnology) in addition to mouse anti-β-catenin (BD Transduction Laboratories, San Jose, CA). For double-labeling immunofluorescence analyses, sections exposed to a pair of primary antibodies were incubated in a 1:400 dilution of goat anti-rabbit immunoglobulin G (IgG) conjugated with a red fluorophore (Alexa Fluor 594; Molecular Probes, Eugene, OR) and goat anti-mouse IgG conjugated with a green fluorophore (Alexa Fluor 488; Molecular Probes, Eugene, OR) for 30 min at room temperature. Images were obtained with a Retiga Exi camera on a Olympus BX51 microscope (Olympus America, Center Valley, PA) using Image-Pro 5.1 software.

Chromatin Immunoprecipitation Assay.

For GH stimulation, mice were injected with 2 μg/g body weight of GH intraperitoneally. They were sacrificed 45 minutes after injection, and liver tissue was harvested. Noninjected mice were used as controls. Liver tissue was cross-linked in 1.5% formaldehyde for 15 minutes at 37°C and sonicated using the Misonix Sonicator 3000 (Misonix, Farmingdale, NY). Immunoprecipitation was carried out in TE buffer containing protease inhibitors (Sigma, St. Louis, MO). Chromatin was incubated with protein A Dynabeads (Invitrogen, Carlsbad, CA), which were preincubated with STAT5A or IgG antibody (R&D Systems, Minneapolis, MN). Immunoprecipitated DNA was eluted and amplified by real-time polymerase chain reaction (PCR) using a 7900 HT fast real-time PCR system (Applied Biosystems, Foster City, CA) and analyzed using SDS2.3 Software (Applied Biosystems, Foster City, CA). Sequence-specific primers used for amplification of the putative STAT5 binding sites (GAS sites) within the Socs2, Nox4, Puma, and Bim genes were as follows: Socs2 GAS sequence, 5′-GGAGGGCGGAGTCGCAGGC-3′ (forward), 5′-GACTTGGCAAGAGTTAACCGTC-3′ (reverse); Nox4 gene GAS1, 5′-AGGCTACTTCCGGCTCAAAT-3′ (forward), 5′-GCGCATACACCCTACTTCCT-3′ (reverse); Nox4 gene GAS2, 5′-CCCAATCAGGGCATACATTT-3′ (forward), 5′-TTTCCCATTCCTAGCACAGC-3′ (reverse); Puma gene GAS1, 5′-AGCAGGAACCTGTCTCAGGA-3′ (forward), 5′-TAAAGGCTGACCCCTTCTCA-3′ (reverse); Bim gene GAS1, 5′-GAAGAGGGGTGAGCATCTTG-3′ (forward), 5′-CAGTTGGAAGCCTCAGAAGG-3′ (reverse); Bim gene GAS2, 5′-GGGTCGGTACTGGCATCTAA-3′ (forward), 5′-GCTCGGCGTTAATCACTTTC-3′ (reverse).

RNA Isolation and Quantitative Real-Time PCR Analysis.

Total RNA was isolated from liver tissue of Stat5f/f, Stat5f/f;Alb-Cre mice and hepatocytes using an RNeasy mini kit (Qiagen, Valencia, CA) and 1 μg of RNA was reverse-transcribed (complementary DNA reverse-transcription kit; Applied Biosystems, Foster City, CA). Real-time quantification of messenger RNA (mRNA) transcript levels was performed using the TaqMan Gene Expression Master Mix (Applied Biosystems, Foster City, CA) according to the manufacturer's instructions. Real-time PCR was performed using an ABI Prism 7900HT (Applied Biosystems, Foster City, CA). TaqMan probes for Nox4 (Mm00479246_m1), Socs2 (Mm00850544_g1), Puma (Mm00519268_m1), Bim (Mm00437795_m1), and beta-actin (4352341E) were used (Applied Biosystems, Foster City, CA) for real-time PCR. The SYBR primers were as follows: Cdkn2b, 5′-CCCTGCCACCCTTACCAGA-3′ (forward), 5′-CAGATACCTCGCAATGTCACG-3′ (reverse); GAPDH, 5′-AACGACCCCTTCATTGAC-3′ (forward), 5′-TCCACGACATACTCAGCAC-3′ (reverse).

Statistical Analysis.

All statistical analyses were performed using a two-tailed, unpaired Student t test. P ≤ 0.05 was considered significant.

Results

  1. Top of page
  2. Abstract
  3. Materials and Methods
  4. Results
  5. Discussion
  6. References
  7. Supporting Information

STAT5-Dependent Regulation of Nox4, Puma, and Bim in Liver Tissue.

To gain further insight into STAT5′s role as tumor suppressor and understand underlying genetic pathways, we mined microarray-based expression data from liver tissue of control and liver-specific Stat5-null mice and from Stat5+/+ and Stat5−/− mouse embryonic fibroblasts (MEFs) (for GEO accession numbers, see Materials and Methods). In addition to the reduced expression of genuine STAT5 target genes (such as Socs2) in Stat5-null liver tissue, we observed a 2.5- and 3.6-fold reduction of Nox4 and Bim mRNA levels, respectively (Supporting Table 1). Similarly, expression of Nox4 in Stat5−/− MEFs was reduced 3.3-fold (Supporting Table 2). In addition, we observed a 5.7-fold reduction of Puma mRNA in Stat5−/− MEFs. Whereas NOX4 is a reactive oxygen species (ROS)-generating enzyme, BIM and PUMA are proapoptotic proteins. Quantitative real-time PCR and western blots confirmed GH and STAT5 dependency of the Nox4, Puma, and Bim genes in liver tissue. Nox4, Puma, and Bim mRNA levels were reduced in Stat5-null livers (Fig. 1A). The Socs2 gene served as a positive control (Fig. 1A,B). NOX4, PUMA, and BIM protein concentrations were also reduced in Stat5-null livers (Fig. 1D). Actin served as a loading control, and the greatly reduced STAT5 levels verified the efficient deletion of the Stat5 locus. To establish GH-dependent expression in vivo, control and liver-specific Stat5-null mice were injected with GH followed by mRNA analyses. Whereas GH treatment of control mice induced Nox4 mRNA levels, no such increase was observed in the absence of STAT5 (Supporting Table 1, Fig. 1B).

thumbnail image

Figure 1. STAT5 regulates Nox4 expression through STAT5 binding to conserved GAS sites in the Nox4 gene promoter in the liver. (A) Expression of Nox4, Puma, Bim, and Socs2 was analyzed by quantitative real-time PCR in liver tissue from Stat5f/f and Stat5f/f;Alb-Cre mice. All values represent the mean ± SD. (B) mRNA expression of Nox4 and Socs2 in Stat5f/f and Stat5f/f;Alb-Cre mice. Mice were injected with GH, tissue was harvested after 4 hours, and RNA was analyzed by quantitative real-time PCR. All values represent the mean ± SD. (C) Schematic of the Nox4 gene. Vertical boxes indicate exons, and conserved GAS sequences are marked. ChIP analysis of STAT5 binding to the putative GAS sites. Stat5f/f mice were injected with GH, tissue was harvested after 45 minutes and binding to GAS sites was analyzed by quantitative real-time PCR. DNA was amplified from STAT5-precipitated complexes using specific primers spanning GAS motifs in the Socs2 and Nox4 genes. All values represent the mean ± SD from three independent experiments performed in triplicate. (D) Levels of NOX4, PUMA, and BIM in liver tissue from Stat5f/f and Stat5f/f;Alb-Cre mice. Expression of NOX4, PUMA, and BIM was determined by way of western blotting. *P < 0.05 versus corresponding controls.

Download figure to PowerPoint

To determine whether STAT5 directly binds to—and thereby controls—the Nox4 gene in the liver, we scanned the promoter region for GAS motifs. Chromatin immunoprecipitation (ChIP) analyses in Stat5-null livers confirmed GH-induced STAT5 binding to two GAS motifs in the Nox4 gene promoter (Fig. 1C). STAT5 binding to a GAS motif in the Socs2 gene promoter served as a positive control (Fig. 1C).

Similar to Nox4, GH-induced Puma and Bim expression in liver tissue was STAT5 dependent (Fig. 2A) and STAT5 bound to GAS motifs in the respective promoter regions as determined by ChIP analyses (Fig. 2B). Binding to the Socs2 gene promoter served as a positive control.

thumbnail image

Figure 2. STAT5 regulates expression of Puma and Bim through STAT5 binding to GAS sites in the Puma and Bim gene promoters in liver. (A) mRNA expression of Puma and Bim in Stat5f/f and Stat5f/f;Alb-Cre mice injected with GH. Mice were injected with GH, and tissue was harvested after 4 hours. Expression of Puma and Bim was analyzed by quantitative real-time PCR in liver tissue from Stat5f/f and Stat5f/f;Alb-Cre mice. All values represent the mean ± SD. (B) Schematic of the Puma and Bim genes. Vertical boxes indicate exons, and the location of conserved GAS sequences is shown. Chromatin immunoprecipitation (ChIP) analysis of STAT5 binding to the putative GAS sites. Stat5f/fmice were treated with GH, and tissue was harvested after 45 minutes. Binding to GAS sites was analyzed by quantitative real-time PCR. DNA was amplified from STAT5-precipitated complexes using specific primers for known (Socs2) and suspected (Puma and Bim) GAS regions. All values represent the mean ± SD from three independent experiments performed in triplicate. (C) mRNA expression of Puma, Bim, Cdkn2b, and Socs2 in immortalized wild-type hepatocyte of murine origin. The cells were treated with DPI for 2 hours. Expression of Puma, Bim, Cdkn2b, and Socs2 mRNA was analyzed by way of quantitative real-time PCR. All values represent the mean ± SD from three independent experiments. *P < 0.05 versus corresponding controls.

Download figure to PowerPoint

STAT5 Does Not Control the Antiapoptotic Genes Bcl2, Bcl2l1, or Mcl1.

To determine whether STAT5 also controls expression of antiapoptotic genes, we analyzed mRNA levels of the Bcl2, Bcl2l1, and Mcl1 genes in control and Stat5-null livers. The respective mRNA levels did not change significantly in the absence of STAT5, suggesting that these genes are not under STAT5 control (Supporting Fig. 1A). Moreover, Bcl2, Bcl2l1, and Mcl1 mRNA levels did not change upon acute GH treatment of mice (Supporting Fig. 1B). We also explored direct STAT5 binding to the respective genomic loci in MEFs through ChIP-sequencing analyses. Although GAS motifs were identified in the Bcl2, Bcl2l1, and Mcl1 gene promoters, no significant STAT5 binding was observed (Supporting Fig. 1C). In addition, no binding was observed in the miR15/16 locus. Binding to the promoter-bound GAS motif in the Socs2 gene served as a positive control.

Expression of Nox4 in MEFs Is Under STAT5 Control.

To gain mechanistic insight into the STAT5 control of Nox4, Puma, and Bim and their interrelationship, we resorted to Stat5−/− MEFs and Stat5−/− MEFs ectopically expressing STAT5A (Stat5−/−/ Stat5A) using a retroviral expression vector. This system also permitted us to study links between STAT5- and NOX4-promoted ROS production. Overexpression of STAT5A in Stat5−/− MEFs led to a further increase of Nox4 and Socs2 expression (Supporting Fig. 2A), and GH-induced expression of these genes was restored (Supporting Fig. 2B). STAT5-mediated induction of NOX4 was also observed at the protein level (Supporting Fig. 2E). To address whether the Nox4 gene is under direct GH/STAT5 control, Stat5+/+ and Stat5−/− MEFs were stimulated with GH. Whereas Nox4 expression was induced 1.9-fold in Stat5+/+ MEFs, no induction was observed in Stat5−/− MEFs (Supporting Fig. 3A). Similarly, Socs2 gene expression was not stimulated by GH in Stat5−/− MEFs (Supporting Fig. 3A). ChIP assays confirmed that STAT5 binds to the conserved proximal GAS motifs in the Nox4 gene promoter (Supporting Fig. 2C). STAT5 binding to the Socs2 gene promoter served as a positive control. Western blot analyses confirmed the reduction of NOX4 in Stat5−/− MEFs (Supporting Fig. 2D). NOX4 and BIM levels were increased in Stat5−/−/Stat5A MEFs compared with parental Stat5−/− MEFs, further supporting that STAT5 directly controls expression of these genes (Supporting Fig. 2E).

STAT5 Controlled Expression of Puma and Bim.

Expression of Puma and Bim was STAT5-dependent and under GH control in MEFs (Supporting Fig. 3A). Western blot analyses confirmed the reduction of PUMA and BIM in Stat5−/− MEFs (Supporting Fig. 2D). Overexpression of STAT5A in Stat5−/− MEFs further increased Puma and Bim mRNA levels (Supporting Fig. 4A), and GH-dependent induction of Puma and Bim expression was observed in Stat5−/−/Stat5A MEFs but not in Stat5−/− MEFs carrying an empty control retrovirus (Supporting Fig. 4B). Tyrosine phospho-STAT5 was detected in GH-stimulated Stat5+/+ MEFs (Supporting Fig. 3C), and elevated levels were observed in Stat5−/−/Stat5A MEFs (Supporting Fig. 3D). Levels of phospho-p53 were also increased in Stat5−/−/Stat5A MEFs compared with parental Stat5−/− MEFs (Supporting Fig. 2E). Puma as a p53 target gene might be regulated by STAT5/p53 signaling.

One GAS motif was identified at position −605 in the Puma gene, and two conserved GAS motifs were identified at positions −3684 and −540 in the Bim gene (Supporting Fig. 4C). ChIP analyses in Stat5+/+ MEFs confirmed GH-induced STAT5 binding to these GAS motifs (Supporting Fig. 4C). Binding to the Socs2 gene promoter served as a positive control.

To explore the mechanistic links between phospho-p53 and expression of a subset of p53 target genes, we analyzed Stat5−/− and Stat5−/−/Stat5A MEFs. Expression of Bax, Fas, Noxa, and Ataf was increased in Stat5−/−/Stat5A MEFs compared with Stat5−/− MEFs carrying an empty control retrovirus (Supporting Fig. 5). Expression of the p53 gene was not changed in Stat5−/−/Stat5A MEFs compared with Stat5−/− MEFs.

STAT5/NOX4-Dependent Regulation of ROS Levels.

To determine whether ROS generation is under direct STAT5/NOX4 control, Stat5+/+ and Stat5−/− MEFs were cultured and assayed for ROS using DCF-DA and lucigenin. DCF fluorescence, an indicator of ROS, was stronger in Stat5+/+ MEFs than in Stat5−/− MEFs (Supporting Fig. 6A). Treatment with H2O2 further increased the production of ROS in Stat5+/+ MEFs compared with Stat5−/− MEFs (Supporting Figs. 6A and 7A). The lucigenin chemiluminescent assays established that STAT5 deficiency led to a reduced level of intracellular ROS in MEFs (Supporting Fig. 6B). Treatment of Stat5+/+ MEFs with diphenylene iodonium (DPI), a NOX inhibitor, reduced ROS levels (Supporting Figs. 6A and 7B). Although DPI inhibits several NOX members, NOX4 is the only one expressed at appreciable levels in liver tissue. This suggests that ROS in MEFs originates from NOX4.

Puma and Bim Are Regulated by NOX4.

To explore mechanistic links between STAT5A and NOX4 and expression of the Puma and Bim genes, we analyzed Stat5−/− MEFs in the absence and presence of retrovirally introduced STAT5 (Stat5−/−/Stat5A). Upon treatment of MEFs with DPI, expression of Puma and Bim was reduced only in MEFs expressing STAT5A (Supporting Fig. 6C). These data provide evidence that the Puma and Bim genes are regulated by STAT5 through NOX4 signaling. STAT5A-induced expression of the Cdkn2b gene, encoding a cell cycle inhibitor p15INK4B, was partially suppressed in the presence of DPI (Supporting Fig. 8A,B) suggesting the STAT5 target Cdkn2b is also under NOX4 control.

Treatment of MEFs with H2O2 further induced Puma mRNA levels in the presence of STAT5A but not in the absence of STAT5 (Supporting Fig. 6D). Simultaneous treatment with DPI led to a suppression of Puma expression (Supporting Fig. 6D). Cell survival in the presence of H2O2 was less affected in the absence of STAT5 (Supporting Fig. 6E). Simultaneous treatment with DPI led to a rebound of cell survival in the presence of STAT5A and to a lesser extent in the absence of STAT5 (Supporting Fig. 6E). These data suggest that STAT5/NOX4 signaling in MEFs controlled PUMA-induced apoptosis and p15INK4B-regulated cell cycle inhibition.

Puma and Bim Are Regulated by NOX4 in Hepatocytes.

To explore a possible relationship between STAT5/NOX4 and the Puma and Bim genes in hepatocytes, the cell line AML12 was treated with the NOX inhibitor DPI. This resulted in reduced levels of Puma and Bim mRNA (Fig. 2C). DPI treatment also resulted in decreased Cdkn2b expression; however, it did not change expression of the STAT5 target gene Socs2. Although DPI inhibits several NOX members, NOX4 is the only family member expressed at appreciable levels in hepatocytes.24 These data imply that the direct STAT5 target gene Cdkn2b is also regulated by STAT5/NOX4 signaling.

As shown above, STAT5 did not bind to the Bcl2, Bcl2l1, and Mcl1 gene loci, and expression was not controlled by STAT5 (Supporting Fig. 1A-C). To test whether these antiapoptotic genes were regulated by NOX4, AML12 hepatocytes were treated with the NOX inhibitor DPI. Expression of Bcl2, Bcl2l1, and Mcl1 was similar in treated and untreated cells (Supporting Fig. 1D), suggesting that these genes are not under STAT5/NOX4 control.

Immunohistochemistry was used as an independent means to corroborate the importance of STAT5 on the accumulation of NOX4, PUMA, and BIM. NOX4, PUMA, and BIM were observed in liver tissue of control mice (Fig. 3B-D, left panels) and at lower levels in liver-specific Stat5-null mice (Fig. 3B-D, right panels). GH-induced nuclear phospho-STAT5 staining was observed in control mice, but not in the absence of STAT5 (Fig. 3A).

thumbnail image

Figure 3. Immunostaining of phospho-STAT5, NOX4, PUMA, and BIM in Stat5f/f and Stat5f/f;Alb-Cre mice. (A) Livers from Stat5f/f and Stat5f/f;Alb-Cre mice were harvested after GH injection and analyzed for phospho-STAT5 expression using immunofluorescence staining with anti–phospho-STAT5 (red) and anti–β-catenin (green) antibodies and 4′,6-diamidino-2-phenylindole (DAPI; blue). (B-D) Livers from Stat5f/f and Stat5f/f;Alb-Cre mice were harvested and analyzed for NOX4 (B), PUMA (C), and BIM (D) expression using immunofluorescence staining with anti-NOX4 (red), anti-PUMA (red), anti-BIM (red), and anti-β-catenin (green) antibodies and DAPI (blue).

Download figure to PowerPoint

STAT5-Dependent Regulation of Hepatoprotective Proteins.

Because loss of STAT5 is correlated with the development of liver disease, it is possible that STAT5 promotes the expression of hepatoprotective genes. We therefore analyzed whether the hepatoprotective genes Hnf6, Lifr, Egfr, and Prlr were under GH/STAT5 control. While GH treatment of control mice induced Hnf6, Lifr, Egfr, and Prlr mRNA levels, no such increase was observed in the absence of STAT5 (Supporting Fig. 9). Expression of Hnf6, Lifr, Egfr, and Prlr mRNA was slightly, yet not significantly, reduced in liver-specific Stat5-null mice (Supporting Fig. 9). Thus, reduced levels of hepatoprotective proteins may contribute to the development of liver disease in liver-specific Stat5-null mice.

Loss of STAT5 Promotes the Development of HCC in Liver-Specific Stat5-Null Mice.

We have shown that loss of STAT5 from liver tissue resulted in hepatosteatosis and HCC upon CCl4 exposure in 3-month-old mice.3.25 To investigate whether loss of STAT5 can lead to the development of HCC without chemical injury, we analyzed control and liver-specific Stat5-null mice at 17 months of age. Severe hepatic steatosis and HCC were observed in all four experimental mice analyzed, but not in age-matched controls (Figs. 4, 5), and nodules were observed in two of the four mice. To investigate molecular consequences associated with the development of HCC, we analyzed phoshpho-STAT5 and phospho-STAT3 levels in control and liver-specific Stat5-null mice at 17 months of age. phospho-STAT3 levels were greatly elevated in liver-specific Stat5-null mice at 17 months of age (Fig. 4C) but not at 2 months. To determine whether loss of STAT5 correlated with increased cell proliferation, tissue sections were stained for phospho-histone H3 as a measure of cell proliferation (Fig. 5D). The number of phospho-histone H3–positive nuclei in liver-specific Stat5-null mice at 17 months was higher than in age-matched controls.

thumbnail image

Figure 4. Loss of STAT5 induces development of tumor in Stat5f/f;Alb-Cre mice. (A) Livers of Stat5f/f and Stat5f/f;Alb-Cre mice at 17 months (left) and 2 months (right). (B) Hematoxylin and eosin staining of liver sections from Stat5f/f and Stat5f/f;Alb-Cre mice. (C) Level of STAT5, phospho-STAT5, STAT3, and phospho-STAT3 in liver tissues from Stat5f/f and Stat5f/f;Alb-Cre mice. Expression of STAT5, phospho-STAT5, STAT3, and phospho-STAT3 was determined by way of western blotting.

Download figure to PowerPoint

thumbnail image

Figure 5. Histological analyses and immunostaining of phospho-histone H3 in liver tissue from Stat5f/f and Stat5f/f;Alb-Cre mice. (A-C) Hematoxylin and eosin staining of liver sections from Stat5f/f and Stat5f/f;Alb-Cre mice at 17 months of age. Hepatosteatosis (A) and HCC (B) were only observed in liver-specific Stat5-null mice. Nodules were also observed only in liver-specific Stat5-null mice (C). (D) Liver tissue from 17-month-old Stat5f/f and Stat5f/f;Alb-Cre mice was harvested and analyzed for phospho-histone H3 using immunofluorescence staining with anti-phospho-histone H3 (red) and anti-β-catenin (green) antibodies and DAPI (blue).

Download figure to PowerPoint

As expected, levels of Nox4, Puma, Bim, and Socs2 mRNA were reduced in 17-month-old liver-specific Stat5-null mice compared with age-matched controls (Supporting Fig. 10A). In contrast, and as expected, Bcl2l1 and Mcl1 mRNA levels were not altered (Supporting Fig. 10B). Unexpectedly, Bcl2 mRNA levels were increased in experimental mice (Supporting Fig. 10B).

CCl4 Treatment Results in STAT5-Dependent Increase of Puma and Bim.

To further investigate whether CCl4 treatment contributes to the deregulation of Nox4, Puma, and Bim, we analyzed control and liver-specific Stat5-null mice at 3 months of age. CCl4 treatment induced Puma and Bim mRNA levels in control mice, but not in liver-specific Stat5-null mice (Supporting Fig. 11). In contrast, no change of Nox4 expression was observed. Using immunohistochemistry, NOX4, PUMA, and BIM were detected in liver tissue of control mice both in the absence and presence of CCl4 (Fig. 6A-C). In contrast, reduced NOX4, PUMA, and BIM staining was observed in liver-specific Stat5-null mice in the absence and presence of CCl4 (Fig. 6A-C).

thumbnail image

Figure 6. Immunostaining of NOX4, PUMA, and BIM in Stat5f/f and Stat5f/f;Alb-Cre mice injected with CCl4. (A-C) Liver tissue from Stat5f/f and Stat5f/f;Alb-Cre mice was harvested after 12 weeks of CCl4 injection and analyzed for expression of NOX4 (A), PUMA (B), and BIM (C) using immunofluorescence staining with anti-NOX4 (red), anti-PUMA (red), anti-BIM (red), and anti-β-catenin (green) antibodies and DAPI (blue).

Download figure to PowerPoint

To establish whether loss of STAT5 and reduced levels of PUMA and BIM correlated with increased cell proliferation, we stained tissue sections for Ki-67 as a measure of cell proliferation (Fig. 7A). The number of Ki-67–positive cells increased in liver tissue of liver-specific Stat5-null mice that had been treated with CCl4 (Fig. 7A). In addition, activation of the apoptotic marker cleaved caspase-3 was decreased in liver tissue of Stat5-null mice treated with CCl4 compared with treated control mice (Fig. 7B). Levels of the proapoptotic protein BAX were decreased in liver tissue from Stat5-null mice compared with control mice (Supporting Fig. 12A,B). Concentrations of proliferating cell nuclear antigen, an indicator of cell proliferation, were elevated in liver-specific Stat5-null mice treated with CCl4 (Supporting Fig. 13A,B).

thumbnail image

Figure 7. Immunostaining of Ki-67 and cleaved caspase-3 in Stat5f/f and Stat5f/f;Alb-Cre mice injected with CCl4. (A) Liver tissue from Stat5f/f and Stat5f/f;Alb-Cre mice was harvested after 12 weeks of CCl4 injection and analyzed for Ki-67 using immunofluorescence staining with anti-Ki-67 (red) and anti-β-catenin (green) antibodies and DAPI (blue). (B) Liver tissue from Stat5f/f and Stat5f/f;Alb-Cre mice was harvested after 12 weeks of CCl4 injection and analyzed for cleaved caspase-3 using immunofluorescence staining with anti-cleaved caspase-3 (red) and anti-β-catenin (green) antibodies and DAPI (blue).

Download figure to PowerPoint

STAT5/NOX4-Dependent Regulation of Apoptosis Signaling in the Liver.

To establish GH or TGF-β–dependent apoptosis signaling in vivo, control mice were injected with GH or TGF-β followed by protein and mRNA analyses. Whereas GH treatment of control mice induced caspase-3 activation and expression of Nox4, Puma, and Bim, no such increase was observed in the absence of GH (Supporting Fig. 14A). TGF-β treatment of control mice, but not experimental mice, induced caspase-3 activation and expression of Nox4, Puma, and Bim mRNA levels (Supporting Fig. 14B). This finding suggests that caspase-3 activation and expression of Puma and Bim by GH or TGF-β treatment induced apoptosis by STAT5/NOX4.

Discussion

  1. Top of page
  2. Abstract
  3. Materials and Methods
  4. Results
  5. Discussion
  6. References
  7. Supporting Information

While in many cell types the transcription factor STAT5 provides proliferative and survival cues by activating respective genetic programs, it serves as a bona fide tumor suppressor in liver tissue.3, 25 Loss of STAT5 from liver tissue leads to hepatosteatosis and the development of HCC upon CCl4 treatment. STAT5′s function as tumor suppressor can be attributed in part to its ability to regulate the cell cycle control genes Cdkn2b and Cdkn1a.25 In addition, the presence of STAT5 also suppresses inappropriate cytokine-induced activation of STAT3, an oncoprotein in its own right.

We now provide evidence for additional venues used by STAT5 to control cell death and thus suppress the development of HCC. Whereas CCl4 exposure is required to induce HCC in 3-month-old liver-specific Stat5-null mice, 17-month-old mice develop HCC in the absence of this chemical insult. Thus, loss of STAT5 by itself is sufficient to fundamentally alter cellular metabolism conducive to disease development. In this study, we have identified and investigated additional STAT5 target genes whose deregulation likely contribute to the development of HCC in the absence of STAT5. Notably, STAT5 controls ROS production through the activation of the Nox4 gene and it activates the genes encoding the proapoptotic and tumor suppressive proteins PUMA and BIM. We therefore propose that STAT5 protects hepatocytes through several pathways, including the activation of cell death programs executed by NOX4, PUMA, and BIM.

Studies on mice from which the genes encoding NOX4, PUMA, and BIM had been deleted, as well as tissue culture cells expressing reduced levels of these proteins, provided sound evidence for these proteins in cell death programs. In hepatocytes, NOX4 is required for TGF-β–induced apoptosis19 and loss of NOX4 from lung epithelium is protective from TGF-β–induced apoptosis.26 In heart tissue, NOX4 protected cells from pressure overload–induced apoptosis.20 In addition to NOX4, NOX1 and NOX2 have also been linked to cell death in hepatocytes, as CCl4-dependent hepatic fibrosis and ROS generation were attenuated in the absence of the latter two isoforms.24, 27, 28 In addition, BIM was also required for tumor cell apoptosis induced by a vascular endothelial growth factor A antagonist.29 Roles for BIM and PUMA in suppressing oncogenesis have been described for B cell leukemias30 and intestinal cells,31, 32 respectively. In those cases, BIM and PUMA exerted a strong apoptotic effect, and their loss led to enhanced tumorigenesis.

Although STAT5 directly controls the expression of p15INK4B,25 PUMA, and BIM (Fig. 8), it can also exert its function through activating another direct downstream target gene Nox4, which encodes NOX4, a key regulator of ROS.18, 20 We further provide evidence for a direct link between NOX4 and PUMA and BIM. Inhibiting NOX4 activity led to decreased expression of PUMA and BIM and p15INK4B. The mechanism of this regulatory venue is still elusive.

thumbnail image

Figure 8. Proposed model of STAT5-regulated apoptosis in hepatocytes. Previous studies have shown that liver-specific STAT5-null mice develop hepatosteatosis and HCC upon treatment with CCl4. STAT5 regulates key cell cycle inhibitor and apoptotic genes. STAT5 directly activates the genes encoding NOX4, PUMA, and BIM and the cell cycle inhibitor p15INK4B. NOX4 can also control PUMA, BIM, and p15INK4B. We propose that loss of STAT5 induces hepatocyte proliferation and HCC upon CCl4 challenge as a result of decreased levels of PUMA, BIM, and p15INK4B.

Download figure to PowerPoint

A picture is evolving that distinct signaling pathways emerging from STAT5 contribute to the protection of hepatocytes (Fig. 8). Hyperactive GH signaling imposed by a GH transgene promoted inflammatory liver cancer in mice, and loss of STAT5 in these mice resulted in accelerated HCC.33 This study linked STAT5 to hepatoprotective genes and the aberrant activation of c-Jun in the absence of STAT5. Moreover, Mueller et al.34 reported that the combined loss of STAT5 and the glucocorticoid receptor resulted in the development of frank HCC. In that study, development of HCC was associated with GH and insulin resistance and high ROS levels. Because NOX4, the enzyme generating ROS, is under STAT5 control, the source of ROS in STAT5 glucocorticoid receptor double knockout mice needs to be identified.

Although loss of STAT5 is sufficient to induce hepatic steatosis and HCC, the extent to which the loss of individual STAT5 executors (NOX4, PUMA, BIM, p15INK4B) would sensitize hepatocytes to injury and lead to pathological changes is unclear. Lastly, the molecular basis of STAT5′s cell specificity, promoting proliferation in the hematopoietic system and apoptosis in liver, remains an enigma. Although STAT5 can activate genes controlling cell proliferation, survival, and death, it is fair to propose that the relative activity of these pathways will determine whether STAT5 is an oncoprotein or a tumor suppressor.

References

  1. Top of page
  2. Abstract
  3. Materials and Methods
  4. Results
  5. Discussion
  6. References
  7. Supporting Information
  • 1
    Hennighausen L, Robinson GW. Interpretation of cytokine signaling through the transcription factors STAT5A and STAT5B. Genes Dev 2008; 22: 711-721.
  • 2
    Zhang Q, Wang HY, Liu X, Wasik MA. STAT5A is epigenetically silenced by the tyrosine kinase NPM1-ALK and acts as a tumor suppressor by reciprocally inhibiting NPM1-ALK expression. Nat Med 2007; 13: 1341-1348.
  • 3
    Hosui A, Kimura A, Yamaji D, Zhu BM, Na R, Hennighausen L. Loss of STAT5 causes liver fibrosis and cancer development through increased TGF-beta and STAT3 activation. J Exp Med 2009; 206: 819-831.
  • 4
    Mallette FA, Gaumont-Leclerc MF, Ferbeyre G. The DNA damage signaling pathway is a critical mediator of oncogene-induced senescence. Genes Dev 2007; 21: 43-48.
  • 5
    Calabrese V, Mallette FA, Deschenes-Simard X, Ramanathan S, Gagnon J, Moores A, et al. SOCS1 links cytokine signaling to p53 and senescence. Mol Cell 2009; 36: 754-767.
  • 6
    Cui Y, Hosui A, Sun R, Shen K, Gavrilova O, Chen W, et al. Loss of signal transducer and activator of transcription 5 leads to hepatosteatosis and impaired liver regeneration. HEPATOLOGY 2007; 46: 504-513.
  • 7
    Holloway MG, Cui Y, Laz EV, Hosui A, Hennighausen L, Waxman DJ. Loss of sexually dimorphic liver gene expression upon hepatocyte-specific deletion of Stat5a-Stat5b locus. Endocrinology 2007; 148: 1977-1986.
  • 8
    Adams JM, Cory S. The Bcl-2 apoptotic switch in cancer development and therapy. Oncogene 2007; 26: 1324-1337.
  • 9
    Ren D, Tu HC, Kim H, Wang GX, Bean GR, Takeuchi O, et al. BID, BIM, and PUMA are essential for activation of the BAX- and BAK-dependent cell death program. Science 2010; 330: 1390-1393.
  • 10
    Karst AM, Dai DL, Martinka M, Li G. PUMA expression is significantly reduced in human cutaneous melanomas. Oncogene 2005; 24: 1111-1116.
  • 11
    Hemann MT, Zilfou JT, Zhao Z, Burgess DJ, Hannon GJ, Lowe SW. Suppression of tumorigenesis by the p53 target PUMA. Proc Natl Acad Sci U S A 2004; 101: 9333-9338.
  • 12
    Erlacher M, Labi V, Manzl C, Bock G, Tzankov A, Hacker G, et al. Puma cooperates with Bim, the rate-limiting BH3-only protein in cell death during lymphocyte development, in apoptosis induction. J Exp Med 2006; 203: 2939-2951.
  • 13
    Nelson DA, Tan TT, Rabson AB, Anderson D, Degenhardt K, White E. Hypoxia and defective apoptosis drive genomic instability and tumorigenesis. Genes Dev 2004; 18: 2095-2107.
  • 14
    Cazanave SC, Mott JL, Elmi NA, Bronk SF, Werneburg NW, Akazawa Y, et al. JNK1-dependent PUMA expression contributes to hepatocyte lipoapoptosis. J Biol Chem 2009; 284: 26591-26602.
  • 15
    Akazawa Y, Cazanave S, Mott JL, Elmi N, Bronk SF, Kohno S, et al. Palmitoleate attenuates palmitate-induced Bim and PUMA up-regulation and hepatocyte lipoapoptosis. J Hepatol 2010; 52: 586-593.
  • 16
    Kaufmann T, Jost PJ, Pellegrini M, Puthalakath H, Gugasyan R, Gerondakis S, et al. Fatal hepatitis mediated by tumor necrosis factor TNFα requires caspase-8 and involves the BH3-only proteins Bid and Bim. Immunity 2009; 30: 56-66.
  • 17
    Schmich K, Schlatter R, Corazza N, Sá Ferreira K, Ederer M, Brunner T, et al. Tumor necrosis factor α sensitizes primary murine hepatocytes to Fas/CD95-induced apoptosis in a Bim- and Bid-dependent manner. HEPATOLOGY 2011; 53: 282-292.
  • 18
    Basuroy S, Tcheranova D, Bhattacharya S, Leffler CW, Parfenova H. Nox4 NADPH oxidase-derived reactive oxygen species, via endogenous carbon monoxide, promote survival of brain endothelial cells during TNF-α-induced apoptosis. Am J Physiol Cell Physiol 2011; 300: C256-C265.
  • 19
    Carmona-Cuenca I, Roncero C, Sancho P, Caja L, Fausto N, Fernández M, et al. Upregulation of the NADPH oxidase NOX4 by TGF-beta in hepatocytes is required for its pro-apoptotic activity. J Hepatol 2008; 49: 965-976.
  • 20
    Kuroda J, Ago T, Matsushima S, Zhai P, Schneider MD, Sadoshima J. NADPH oxidase 4 (Nox4) is a major source of oxidative stress in the failing heart. Proc Natl Acad Sci U S A 2010; 107: 1556515570.
  • 21
    Ago T, Kuroda J, Pain J, Fu C, Li H, Sadoshima J. Upregulation of Nox4 by hypertrophic stimuli promotes apoptosis and mitochondrial dysfunction in cardiac myocytes. Circ Res 2010; 106: 1253-1264.
  • 22
    Senturk S, Mumcuoglu M, Gursoy-Yuzugullu O, Cingoz B, Akcali KC, Ozturk M. Transforming growth factor-beta induces senescence in hepatocellular carcinoma cells and inhibits tumor growth. HEPATOLOGY 2010; 52: 966-974.
  • 23
    Yakar S, Liu JL, Stannard B, Butler A, Accili D, Sauer B, et al. Normal growth and development in the absence of hepatic insulin-like growth factor I. Proc Natl Acad Sci U S A 1999; 96: 7324-7329.
  • 24
    Paik YH, Iwaisako K, Seki E, Inokuchi S, Schnabl B, Osterreicher CH, et al. The nicotinamide adenine dinucleotide phosphate oxidase (NOX) homologues NOX1 and NOX2/gp91(phox) mediate hepatic fibrosis in mice. HEPATOLOGY 2011; 53: 1730-1741.
  • 25
    Yu JH, Zhu BM, Wickre M, Riedlinger G, Chen W, Hosui A, et al. The transcription factors signal transducer and activator of transcription 5A (STAT5A) and STAT5B negatively regulate cell proliferation through the activation of cyclin-dependent kinase inhibitor 2b (Cdkn2b) and Cdkn1a expression. HEPATOLOGY 2010; 52: 1808-1818.
  • 26
    Carnesecchi S, Deffert C, Donati Y, Basset O, Hinz B, Preynat-Seauve O, et al. A key role for NOX4 in epithelial cell death during development of lung fibrosis. Antioxid Redox Signal 2011; 15: 607-619.
  • 27
    Jiang JX, Venugopal S, Serizawa N, Chen X, Scott F, Li Y, et al. Reduced nicotinamide adenine dinucleotide phosphate oxidase 2 plays a key role in stellate cell activation and liver fibrogenesis in vivo. Gastroenterology 2010; 139: 1375-1384.
  • 28
    Cui W, Matsuno K, Iwata K, Ibi M, Matsumoto M, Zhang J, et al. NOX1/nicotinamide adenine dinucleotide phosphate, reduced form (NADPH) oxidase promotes proliferation of stellate cells and aggravates liver fibrosis induced by bile duct ligation. HEPATOLOGY 2011; 54: 949-958.
  • 29
    Naik E, O'Reilly LA, Asselin-Labat ML, Merino D, Lin A, Cook M, et al. Destruction of tumor vasculature and abated tumor growth upon VEGF blockade is driven by proapoptotic protein Bim in endothelial cells. J Exp Med 2011; 208: 1351-1358.
  • 30
    Egle A, Harris AW, Bouillet P, Cory S. Bim is a suppressor of Myc-induced mouse B cell leukemia. Proc Natl Acad Sci U S A 2004; 101: 6164-6169.
  • 31
    Qiu W, Wu B, Wang X, Buchanan ME, Regueiro MD, Hartman DJ, et al. PUMA-mediated intestinal epithelial apoptosis contributes to ulcerative colitis in humans and mice. J Clin Invest 2011; 121: 1722-1732.
  • 32
    Qiu W, Carson-Walter EB, Kuan SF, Zhang L, Yu J. PUMA suppresses intestinal tumorigenesis in mice. Cancer Res 2009; 69: 4999-5006.
  • 33
    Friedbichler K, Themanns M, Mueller KM, Schlederer M, Kornfeld JW, Terracciano LM, et al. Growth-hormone-induced signal transducer and activator of transcription 5 signaling causes gigantism, inflammation, and premature death but protects mice from aggressive liver cancer. HEPATOLOGY 2012; 55: 941-952.
  • 34
    Mueller KM, Kornfeld JW, Friedbichler K, Blaas L, Egger G, Esterbauer H, et al. Impairment of hepatic growth hormone and glucocorticoid receptor signaling causes steatosis and hepatocellular carcinoma in mice. HEPATOLOGY 2011; 54: 1398-1409.

Supporting Information

  1. Top of page
  2. Abstract
  3. Materials and Methods
  4. Results
  5. Discussion
  6. References
  7. Supporting Information

Additional Supporting Information may be found in the online version of this article.

FilenameFormatSizeDescription
HEP_25900_sm_SuppFig1.tif1205KSupporting Information Figure 1.
HEP_25900_sm_SuppFig2.tif7327KSupporting Information Figure 2.
HEP_25900_sm_SuppFig3.tif2135KSupporting Information Figure 3.
HEP_25900_sm_SuppFig4.tif7308KSupporting Information Figure 4.
HEP_25900_sm_SuppFig5.tif142KSupporting Information Figure 5.
HEP_25900_sm_SuppFig6.tif1952KSupporting Information Figure 6.
HEP_25900_sm_SuppFig7.tif91KSupporting Information Figure 7.
HEP_25900_sm_SuppFig8.tif88KSupporting Information Figure 8.
HEP_25900_sm_SuppFig9.tif107KSupporting Information Figure 9.
HEP_25900_sm_SuppFig10.tif153KSupporting Information Figure 10.
HEP_25900_sm_SuppFig11.tif108KSupporting Information Figure 11.
HEP_25900_sm_SuppFig12.tif620KSupporting Information Figure 12.
HEP_25900_sm_SuppFig13.tif411KSupporting Information Figure 13.
HEP_25900_sm_SuppFig14.tif310KSupporting Information Figure 14.
HEP_25900_sm_SuppTab1.doc48KSupporting Information Table 1. A. Expression of Nox4, Bim and Socs2 genes in STAT5f/f and STAT5f/f;Alb-Cre liver tissue.
HEP_25900_sm_SuppTab2.doc42KSupporting Information Table 2. Expression of Nox4, Puma and Socs2 genes in Stat5+/+ and Stat5-/- MEFs.

Please note: Wiley Blackwell is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.