SEARCH

SEARCH BY CITATION

References

  • 1
    Ma Z, Lee SS. Cirrhotic cardiomyopathy: getting to the heart of the matter. HEPATOLOGY 1996; 24: 451-459.
  • 2
    Møller S, Henriksen JH. Cirrhotic cardiomyopathy: a pathophysiological review of circulatory dysfunction in liver disease. Heart 2002; 87: 9-15.
  • 3
    Liu H, Ma Z, Lee SS. Contribution of nitric oxide to the pathogenesis of cirrhotic cardiomyopathy in bile duct-ligated rats. Gastroenterology 2000; 118: 937-944.
  • 4
    Kumar A, Paladugu B, Mensing J, Kumar A, Parrillo JE. Nitric oxide-dependent and -independent mechanisms are involved in TNF-alpha-induced depression of cardiac myocyte contractility. Am J Physiol Regul Integr Comp Physiol 2007; 292: 1900-1906.
  • 5
    Rudiger A, Singer M. Mechanisms of sepsis-induced cardiac dysfunction. Crit Care Med 2007; 35: 1599-1608.
  • 6
    Fink MA, Zackhary DR, Mackey JA, Desnoyer RW, Apperson-Hansen C, Damron D, et al. AKAP-mediated targeting of protein kinase A regulates contractility in cardiac myocytes. Circ Res 2001; 88: 291-297.
  • 7
    Derici K, Samsar U, Demirel-Yilmaz E. Nitric oxide effects depend on different mechanisms in different regions of the rat heart. Heart Vessels 2012; 27: 89-97.
  • 8
    Liu H, Lee SS. Nuclear factor-κB inhibition improves myocardial contractility in rats with cirrhotic cardiomyopathy. Liver Int 2008; 28: 640-648.
  • 9
    Sort P, Navasa M, Arroyo V, Aldeguer X, Planas R, Ruiz-del-Arbol L, et al. Effect of intravenous albumin on renal impairment and mortality in patients with cirrhosis and spontaneous bacterial peritonitis. N Engl J Med 1999; 341: 403-409.
  • 10
    Ginès P, Angeli P, Lenz K, Møller S, Moore K, Moreau R, et al. EASL clinical practice guidelines on the management of ascites, spontaneous bacterial peritonitis, and hepatorenal syndrome in cirrhosis. J Hepatol 2010; 53: 397-417.
  • 11
    Quilan GJ, Munby S, Martin GS, Bernard GR, Gutteridge JMC, Evans TW. Albumin influences total plasma antioxidant capacity favourably in patients with acute lung injury. Crit Care Med 2004; 32: 755-759.
  • 12
    Evans TW. Review article: albumin as a drug-biological effects of albumin unrelated to oncotic pressure. Aliment Pharmacol Ther 2002; 16( s5): 6-11.
  • 13
    Quinlan GJ, Martin GS, Evans TW. Albumin: biochemical properties and therapeutic potential. HEPATOLOGY 2005; 41: 1211-1219.
  • 14
    Arroyo V, Fernandez J. Pathophysiological basis of albumin use in cirrhosis. Ann Hepatol 2011; 10( Suppl 1): s6-s14.
  • 15
    Meziani F, Kremer H, Tesse A, Baron-Menguy C, Mathien C, Mostefai HA, et al. Human serum albumin improves arterial dysfunction during early resuscitation in mouse endotoxic model via reduced oxidative and nitrosative stresses. Am J Pathol 2007; 171: 1753-1761.
  • 16
    Angeli P, Jimenez W, Veggian R, Fasolato S, Volpin R, MacHenzie HS, et al. Increased activity of guanosine 3′-5′-cyclic monophosphate phosphodiesterase in the renal tissue of cirrhotic rats with ascites. HEPATOLOGY 2000: 31: 304-310.
  • 17
    Bova S, Cargnelli G, D'Amato E, Forti S, Yang Q, Trevisi L, et al. Calcium-antagonist effect of norbormide, on isolated perfused heart and cardiac myocytes of guinea-pig. Br J Pharmacol 1997; 120: 14-19
  • 18
    Semplicini A, Lenzini L, Sartori M, Papparella I, Calò LA, Pagnin E, et al. Reduced expression of regulator of G-protein signaling 2 (RGS2) in hypertensive patients increases calcium mobilization and ERK1/2 phosphorylation induced by angiotensin II. J Hypertens 2006; 24: 1115-1124.
  • 19
    Papparella I, Ceolotto G, Berto L, Cavalli M, Bova S, Cargnelli G, et al. Vitamin C prevents zidovudine-induced NAD(P)H oxidase activation and hypertension in the rat. Cardiovasc Res 2007; 73: 432-438.
  • 20
    Yang YY, Liu H, Nam SW, Kunos G, Lee SS. Mechanisms of TNFalpha-induced cardiac dysfunction in cholestatic bile duct-ligated mice: interaction between TNFalpha and endocannabinoids. J Hepatol 2010; 52: 298-306.
  • 21
    Cailleret M, Amadou A, Andrieu-Abadie N, Nawrocki A, Adamy C, Ait-Mamar B, et al. N-acetylcysteine prevents the deleterious effect of tumor necrosis factor-(alpha) on calcium transients and contraction in adult rat cardiomyocytes. Circulation 2004; 109: 406-411.
  • 22
    Nishida M, Maruyama Y, Tanaka R, Kontani K, Nagao T, Kurose H. Gαi and Gαo target proteins of reactive oxygen species. Nature 2000; 408: 492-495.
  • 23
    Persad S, Panagia V, Dhalla NS. Role of H2O2 in changing beta-adrenoceptor and adenylyl cyclase in ischemia-reperfused hearts. Mol Cell Biochem 1998; 186: 99-106.
  • 24
    Ceolotto G, Papparella I, Sticca A, Bova S, Cavalli M, Cargnelli G, et al. An abnormal gene expression of the beta-adrenergic system contributes to the pathogenesis of cardiomyopathy in cirrhotic rats. HEPATOLOGY 2008; 48: 1913-1923.
  • 25
    Zheng M, Han Q, Xiao R. Distinct β-adrenergic receptor subtype signalling in the heart and their pathophysiological relevance. Acta Physiol Sinica 2004; 56: 1-15.
  • 26
    Steinberg SF. The molecular basis for distinct beta-adrenergic receptor subtype actions in cardiomyocytes. Circ Res 1999; 85: 1101-1111.
  • 27
    Lohse MJ, Engelhardt S, Eschenhagen T. What is the role of beta-adrenergic signaling in heart failure? Circ Res 2003; 93: 896-906.
  • 28
    Fernández J, Navasa M, Garcia-Pagan JC, G-Abraldes J, Jiménez W, Bosch J, et al. Effect of intravenous albumin on systemic and hepatic hemodynamics and vasoactive neurohormonal systems in patients with cirrhosis and spontaneous bacterial peritonitis. J Hepatol 2004; 41: 384-390.
  • 29
    Francés R, Zapater P, González-Navajas JM, Muñoz C, Caño R, Moreu R, et al. Bacterial DNA in patients with cirrhosis and noninfected ascites mimics the soluble immune response established in patients with spontaneous bacterial peritonitis. HEPATOLOGY 2008; 47: 978-985.