• 1
    Babior BM. NADPH oxidase. Curr Opin Immunol 2004; 16: 42-47.
  • 2
    Nauseef WM, Volpp BD, McCormick S, Leidal KG, Clark RA. Assembly of the neutrophil respiratory burst oxidase. Protein kinase C promotes cytoskeletal and membrane association of cytosolic oxidase components. J Biol Chem 1991; 266: 5911-5917.
  • 3
    Bataller R, Schwabe RF, Choi YH, Yang L, Paik YH, Lindquist J, et al. NADPH oxidase signal transduces angiotensin II in hepatic stellate cells and is critical in hepatic fibrosis. J Clin Invest 2003; 112: 1383-1394.
  • 4
    Laurent A, Nicco C, Chereau C, Goulvestre C, Alexandre J, Alves A, et al. Controlling tumor growth by modulating endogenous production of reactive oxygen species. Cancer Res 2005; 65: 948-956.
  • 5
    Ramaiah SK, Jaeschke H. Role of neutrophils in the pathogenesis of acute inflammatory liver injury. Toxicol Pathol 2007; 35: 757-766.
  • 6
    Lucey MR, Mathurin P, Morgan TR. Alcoholic hepatitis. N Eng J Med 2009; 25: 2758-2769.
  • 7
    Dominguez M, Miquel R, Colmenero J, Moreno M, Garcia-pagan JC, Bosch J, et al. Hepatic expression of CXC chemokines predicts portal hypertension and survival in patients with alcoholic hepatitis. Gastroenterology 2009; 136: 1639-1650.
  • 8
    Aram G, Potter JJ, Liu X, Wang L, Torbenson MS, Mezey E. Deficiency of nicotinamide adenine dinucleotide phosphate, reduced form oxidase enhances hepatocellular injury but attenuates fibrosis after chronic carbon tetrachloride administration. HEPATOLOGY 2009; 49: 911-919.
  • 9
    Arvaniti V, D'Amico G, Fede G, Manousou P, Tsochatzis E, Pleguezuelo M, Burroughs AK. Infections in patients with cirrhosis increase mortality four-fold and should be used in determining prognosis. Gastroenterology 2010; 139: 1246-1256, 1256.e1-5.
  • 10
    Ward PA. Role of C5 activation products in sepsis. ScientificWorldJournal 2010; 10: 2395-2402.
  • 11
    Mookerjee RP, Stadlbauer V, Lidder S, Wright GA, Hodges SJ, Davies NA, Jalan R. Neutrophil dysfunction in alcoholic hepatitis superimposed on cirrhosis is reversible and predicts the outcome. HEPATOLOGY 2007; 46: 831-840.
  • 12
    Rajkovic IA, Williams R. Abnormalities of neutrophil phagocytosis, intracellular killing, and metabolic activity in alcoholic cirrhosis and hepatitis. HEPATOLOGY 1986; 6: 252-262.
  • 13
    Juttner B, Younes A, Weissig A, Ahrens J, Becker T, Scheinichen D. Reduced post-operative neutrophil activation in liver transplant recipients suffering from post-hepatitic cirrhosis. Clin Transplant 2009; 23: 921-929.
  • 14
    Ponziani F, Ojetti V, Tortora A, Di Maurizio L, Purchiaroni F, Gasbarrini A. The metabolic and toxicological considerations for mTOR inhibitors in the treatment of hepatocarcinoma. Expert Opin Drug Metab Toxicol 2011; 7: 1535-1546.
  • 15
    Zhu AX. Molecularly targeted therapy for advanced hepatocellular carcinoma in 2012: current status and future perspectives. Semin Oncol 2012; 39: 493-502.
  • 16
    Fernandez M, Mejias M, Garcia-Pras E, Mendez R, Garcia-Pagan JC, Bosch J. Reversal of portal hypertension and hyperdynamic splanchnic circulation by combined vascular endothelial growth factor and platelet-derived growth factor blockade in rats. HEPATOLOGY 2007; 46: 1208-1217.
  • 17
    Mejias M, Garcia-Pras E, Gallego J, Mendez R, Bosch J, Fernandez M. Relevance of the mTOR signaling pathway in the pathophysiology of splenomegaly in rats with chronic portal hypertension. J Hepatol 2010; 52: 529-539.
  • 18
    Liang W, Wang D, Ling X, Cao AA, Kong Y, Shang Y, et al. Sirolimus-based immunosuppression in liver transplantation for hepatocellular carcinoma: a meta-analysis. Liver Transpl 2012; 18: 62-69.
  • 19
    Foster DA. Phosphatidic acid signaling to mTOR: signals for the survival of human cancer cells. Biochim Biophys Acta 2009; 1791: 949-955.
  • 20
    Kim DH, Sarbassov DD, Ali SM, King JE, Latek RR, Erdjument-Bromage H, et al. mTOR interacts with raptor to form a nutrient-sensitive complex that signals to the cell growth machinery. Cell 2002; 110: 163-175.
  • 21
    Loewith R, Jacinto E, Wullschleger S, Lorberg A, Crespo JL, Bonenfant D, et al. Two TOR complexes, only one of which is rapamycin sensitive, have distinct roles in cell growth control. Mol Cell 2002; 10: 457-468.
  • 22
    Nave BT, Ouwens M, Withers DJ, Alessi DR, Shepherd PR. Mammalian target of rapamycin is a direct target for protein kinase B: identification of a convergence point for opposing effects of insulin and amino-acid deficiency on protein translation. Biochem J 1999; 344: 427-431.
  • 23
    Djerdjouri B, Lenoir M, Giroud JP, Perianin A. Contribution of mitogen-activated protein kinase to stimulation of phospholipase D by the chemotactic peptide fMet-leu-Phe in human neutrophils. Biochem Biophys Res Commun 1999; 264: 371-375.
  • 24
    Dang PM, Stensballe A, Boussetta T, Raad H, Dewas C, Kroviarski Y, et al. A specific p47phox -serine phosphorylated by convergent MAPKs mediates neutrophil NADPH oxidase priming at inflammatory sites. J Clin Invest 2006; 116: 2033-2043.
  • 25
    Paruch S, El-Benna J, Djerdjouri B, Marullo S, Perianin A. A role of p44/42 mitogen-activated protein kinases in formyl-peptide receptor-mediated phospholipase D activity and oxidant production. FASEB J 2006; 20: 142-144.
  • 26
    Patel S, Djerdjouri B, Raoul-Des-Essarts Y, Dang PM, El-Benna J, Perianin A. Protein kinase B (AKT) mediates phospholipase D activation via ERK1/2 and promotes respiratory burst parameters in formylpeptide-stimulated neutrophil-like HL-60 cells. J Biol Chem 2010; 285: 32055-32063.
  • 27
    Stossel T. In: Gallin JI, Snyderman R, eds. Inflammation. Philadelphia, PA: Lippincot Williams & Wilkins; 1999: 661-679.
  • 28
    Liu L, Das S, Losert W, Parent CA. mTORC2 regulates neutrophil chemotaxis in a cAMP- and RhoA-dependent fashion. Dev Cell 2010; 19: 845-857.
  • 29
    El Benna J, Faust RP, Johnson JL, Babior BM. Phosphorylation of the respiratory burst oxidase subunit p47phox as determined by two-dimensional phosphopeptide mapping. Phosphorylation by protein kinase C, protein kinase A, and a mitogen-activated protein kinase. J Biol Chem 1996; 271: 6374-6378.
  • 30
    Casini A, Ceni E, Salzano R, Biondi P, Parola M, Galli A, et al. Neutrophil-derived superoxide anion induces lipid peroxidation and stimulates collagen synthesis in human hepatic stellate cells: role of nitric oxide. HEPATOLOGY 1997; 25: 361-367.
  • 31
    De Minicis S, Bataller R, Brenner DA. NADPH oxidase in the liver: defensive, offensive, or fibrogenic? Gastroenterology 2006; 131: 272-275.
  • 32
    Linderoth G, Jepsen P, Schonheyder HC, Johnsen SP, Sorensen HT. Short-term prognosis of community-acquired bacteremia in patients with liver cirrhosis or alcoholism: a population-based cohort study. Alcohol Clin Exp Res 2006; 30: 636-641.
  • 33
    Tritto G, Bechlis Z, Stadlbauer V, Davies N, Frances R, Shah N, et al. Evidence of neutrophil functional defect despite inflammation in stable cirrhosis. J Hepatol 2011; 55: 574-581.
  • 34
    Garfia C, Garcia-Ruiz I, Solis-Herruzo JA. Deficient phospholipase C activity in blood polymorphonuclear neutrophils from patients with liver cirrhosis. J Hepatol 2004; 40: 749-756.
  • 35
    Babior BM, Curnutte JT. Chronic granulomatous disease—pieces of a cellular and molecular puzzle. Blood Rev 1987; 1: 215-218.