SEARCH

SEARCH BY CITATION

References

  • 1
    Carey MC. Lipid solubilization in bile. In: NorthfieldT, JazrawiR, Zentler-MunroP. eds. Bile acids in health and diseases. Dordrecht, The Netherlands: Kluwer Academic, 1988: 6182.
  • 2
    Cabral DJ, Small DM. Physical chemistry of bile. In: SchultzSG, ForteJG, RaunerBB. eds. Handbook of physiology: the gastrointestinal system III. section 6. Baltimore, MD: American Physiological Society, Waverly Press, 1989: 621662.
  • 3
    Lothe J, Pound GM. Statistical mechanics of nucleation. In: ZettlemoyerAC. ed. Nucleation. New York: Dekker, 1969: 109149.
  • 4
    Liu CL, Jain UK, Lee PH, Mazer NA, Higuchi WI. Cholesterol thermodynamic activity, quasielastic light scattering, and polarizing microscopy studies in aqueous taurocholate-lecithin solutions supersaturated with cholesterol. J Colloid Interf Sci 1994; 165: 411424.
  • 5
    Chijiiwa K, Kiyosawa R, Nakayama F. Cholesterol monomer activity correlates with nucleation time in model bile. Clin Chim Acta 1988; 178: 181192.
  • 6
    Chijiiwa K, Hirota I, Noshiro H. High vesicular cholesterol and protein in bile are associated with formation of cholesterol but not pigment gallstones. Dig Dis Sci 1993; 38: 161166.
  • 7
    Harvey PRC, Somjen G, Gilat T, Gallinger S, Strasberg SM. Vesicular cholesterol in bile: relationship to protein concentration and nucleation time. Biochim Biophys Acta 1988; 958: 1018.
  • 8
    Halpern Z, Dudley MA, Kibe A, Lynn MP, Breuer AC, Holzbach RT. Rapid vesicle formation and aggregation in abnormal human biles. Gastroenterology 1986; 90: 875885.
  • 9
    Kibe A, Dudley MA, Halpern Z, Lynn MP, Breuer AC, Holzbach RT. Factors affecting cholesterol monohydrate crystal nucleation time in model systems of supersaturated bile. J Lipid Res 1985; 26: 11021111.
  • 10
    Somjen GJ, Wachtel E, Warshavskaya O, Rosenberg R, Gilat T. Comparison of ultracentrifugation and chromatography for the separation and quantitation of cholesterol carriers in model and human biles. Hepatology 1993; 18: 96A. Abstract.
  • 11
    Ulloa N, Garrido J, Nervi F. Ultracentrifugal isolation of vesicular carriers of biliary cholesterol in native human and rat bile. Hepatology 1987; 7: 235244.
  • 12
    Lee SP, Park HZ, Madani H, Kaler EW. Partial characterization of a non-micellar system of cholesterol solubilization in bile. Am J Physiol 1987; 252: G374383.
  • 13
    Amigo L, Covarrubias C, Nervi F. Separation and quantitation of cholesterol carriers in native bile by ultracentrifugation. Hepatology 1990; 12: 130S133S.
  • 14
    Amigo L, Covarrubias C, Nervi F. Rapid isolation of vesicular and micellar carriers of biliary lipids by ultracentrifugation. J Lipid Res 1990; 31: 341347.
  • 15
    Carey MC, Small DM. The physical chemistry of cholesterol solubility in bile: relationship to gallstone formation and dissolution in man. J Clin Invest 1978; 61: 9981026.
  • 16
    Sömjen GJ, Gilat T. Contribution of vesicular and micellar carriers to cholesterol transport in human bile. J Lipid Res 1985; 26: 699704.
  • 17
    Cohen DE, Kaler E, Carey MC. Cholesterol carriers in human bile: are “lamellae” involved? Hepatology 1993; 18: 15221531.
  • 18
    Donovan JM, Carey MC. Separation and quantitation of cholesterol “carriers” in bile. Hepatology 1990; 12: 94S105S.
  • 19
    Donovan JM, Timofeyeva N, Carey MC. Influence of total lipid concentration, bile salt: lecithin ratio, and cholesterol content on inter-mixed micellar/vesicular (non-lecithin-associated) bile salt concentration in model bile. J Lipid Res 1991; 32: 15011512.
  • 20
    Cohen DE, Carey MC. Rapid (1 hour) high performance gel filtration chromatography resolves coexisting simple micelles, mixed micelles, and vesicles in bile. J Lipid Res 1990; 31: 21032112.
  • 21
    Donovan JM, Jackson AA, Carey MC. Molecular species composition of the inter-mixed micellar/vesicular bile salt concentrations in model bile: dependence upon hydrophilic-hydrophobic balance. J Lipid Res 1993; 34: 11311140.
  • 22
    Yuet PK, Blankschtein D, Donovan JM. Ultracentrifugation systematically overestimates vesicular cholesterol in model biles. Hepatology 1994; 20: 264A. Abstract.
  • 23
    Pope JL. Crystallization of sodium taurocholate. J Lipid Res 1967; 8: 146147.
  • 24
    Donovan JM, Jackson AA. Rapid determination by centrifugal ultrafiltration of the intermixed micellar/vesicular (non-lecithin associated) bile salt concentrations in model bile: influence of Donnan equilibrium effect. J Lipid Res 1993; 34: 11211129.
  • 25
    Cohen DE, Fisch MR, Carey MC. Principles of laser light-scattering spectroscopy: applications to the physiochemical study of model and native biles. Hepatology 1990; 12: 113S122S.
  • 26
    WeastRC. ed. CRC handbook of chemistry and physics. Ed 67. Boca Raton, FL: CRC Press, 1986: D-262.
  • 27
    Bartlett GR. Phosphorus assay in column chromatography. J Biol Chem 1959; 234: 466468.
  • 28
    Turley SD, Dietschy JM. Re-evaluation of the 3α-hydroxysteroid dehydrogenase assay for total bile acids in bile. J Lipid Res 1978; 19: 924928.
  • 29
    Bott S. Polydispersity analysis of QELS data by a smoothed inverse Laplace transform. In: DahnekeBE. ed. Measurement of suspended particles by quasi-elastic light scattering. New York: Wiley, 1983: 129157.
  • 30
    Provencher SW. A constrained regularization method for inverting data represented by linear algebraic or integral equations. Comput Phys Commun 1982; 27: 213227.
  • 31
    Provencher SW. CONTIN: a general purpose constrained regularization program for inverting noisy linear algebraic and integral equations. Comput Phys Commun 1982; 27: 229242.
  • 32
    Grabowski EF, Morrison ID. Particle size distributions from analyses of quasi-elastic light-scattering data, In: DahnekeBE. ed. Measurement of suspended particles by quasi-elastic light scattering. New York: Wiley, 1983: 199236.
  • 33
    Mazer NA, Benedek GB, Carey MC. Quasielastic light-scattering studies of aqueous biliary lipid systems: mixed micelle formation in bile salt-lecithin solutions. Biochemistry 1980; 19: 601615.
  • 34
    Mazer NA, Carey MC. Quasi-elastic light-scattering studies of aqueous biliary lipid systems: cholesterol solubilization and precipitation in model bile solutions. Biochemistry 1983; 22: 426442.
  • 35
    Rickwood D, Birnie GD. Introduction: principles and practices of centrifugation. In: BirnieGD, RickwoodD, eds. Centrifugal separations in molecular and cell biology. London: Butter-worths & Co., 1978: 16.
  • 36
    Cohen DE, Angelico M, Carey MC. Structural alterations in lecithin-cholesterol vesicles following interactiions with monomeric and micellar bile salts: physical-chemical basis for subselection of biliary lecithin species and aggregative states of biliary lipids during bile formation. J Lipid Res 1990; 31: 5570.
  • 37
    Sahlin S, Thyberg P, Ahlberg J, Angelin B, Einarsson K. Distribution of cholesterol between vesicles and micelles in human gallbladder bile: influence of treatment with chenodeoxycholic acid and ursodeoxycholic acid. Hepatology 1991; 13: 104110.
  • 38
    Rossen WR, Davis HT, Scriven LE. Sedimentation of molecular solutions in the ultracentrifuge: I. Equilibrium phase behavior. J Colloid Interf Sci 1986; 113: 248268.
  • 39
    Duyndam A, Odijk T. Equilibrium distribution of linear micellar aggregates in a gravitational or centrifugal field. Langmuir 1993; 9: 11601161.
  • 40
    Duyndam A, Odijk T. Dynamic sedimentation of linear micellar aggregates in a centrifugal field. J Chem Phys 1994; 100: 45694574.