SEARCH

SEARCH BY CITATION

References

  • 1
    Biasi F, Bosco M, Chiappino I, Chiarpotto E, Lanfranco G, Ottobrelli A, Massano G, et al. Oxidative damage in human liver transplantation. Free Radio Biol Med 1995; 19: 311317.
  • 2
    Ericzon BG, Eusufzai S, Kubota K, Einarsson K, Angelin B. Characteristics of biliary lipid metabolism after liver transplantation. Hepatology 1990; 12: 12221228.
  • 3
    Adkison D, Höllwarth ME, Benoit JN, Parks DA, McCord JM, Granger DN. Role of free radicals in ischemia-reperfusion injury to the liver. Acta Physiol Scand 1986; 548(suppl): 101107.
  • 4
    Nauta RJ, Tsimoyiannis E, Uribe M, Walsh DB, Miller D, Butterfield A. Oxygen-derived free radicals in hepatic ischemia and reperfusion injury in the rat. Surg Gynecol Obstet 1990; 171: 120125.
  • 5
    Jaeschke H. Reactive oxygen and ischemia/reperfusion injury of the liver. Chem Biol Interact 1991; 79: 115136.
  • 6
    Wu TW, Hashimoto N, Au JX, Wu J, Mickle DAG, Carey D. Trolox protects rat hepatocytes against oxyradical damage and the ischemic rat liver from reperfusion injury. Hepatology 1991; 13: 575580.
  • 7
    Theilmann L, Otto G, Arnold J, Gmelin K, Stiehl A. Biliary secretion of bile acids, lipids, and bilirubin by the transplanted liver: a quantitative study in patients on cyclosporine. Transplantation 1991; 52: 10201023.
  • 8
    Sauer P, Stiehl A, Otto G, Theilmann L. In patients with orthotopic liver transplantation, serum markers of cholestasis are unreliable indicators of biliary secretion. J Hepatol 1995; 22: 561564.
  • 9
    Noack K, Bronk SF, Kato A, Gores GJ. The greater vulnerability of bile duct cells to reoxygenation injury than to anoxia. Implications for the pathogenesis of biliary structures after liver transplantation. Transplantation 1993; 56: 495500.
  • 10
    Tzakis A, Todo S, Starzl TE. Orthotopic liver transplantation with preservation of the inferior vena cava. Ann Surg 1989; 210: 649652.
  • 11
    Panzica GC, Calcagni M, Calcagni G. An apple IIe-based morphometrical package [Abstract]. Acta Anatomica 1987; 130: 70.
  • 12
    Kamiike W, Burdelski M, Steinhoff G, Ringe B, Lauchart W, Pichlmayr R. Adenine nucleotide metabolism and its relation to organ viability in human liver transplantation. Transplantation 1988; 45: 138143.
  • 13
    Tsukada N, Ackerley CA, Phillips MJ. The structure and organization of the bile canalicular cytoskeleton with special reference to actin and actinbinding proteins. Hepatology 1995; 21: 11061113.
  • 14
    Gatmaitan ZC, Leveille-Webster CR, Arias IM. The biology of the bile canaliculus. In: AriasIM, BoyerJL, FaustoN, JakobyWB, SchachterDA, ShafritzDA, eds. The liver: biology and pathobiology. Ed. 3. New York: Raven, 1994: 665675.
  • 15
    Forscher P, Lin CH, Thompson C. Novel form of growth cone motility involving site-directed actin filament assembly. Nature 1992; 357: 515518.
  • 16
    Cooper JA. The role of actin polymerization in cell motility. Annu Rev Physiol 1991; 53: 585605.
  • 17
    Lemasters JJ, Stemkowski CJ, Sungchul JI, Thurman RG. Cell surface changes and enzyme release during hypoxia and reoxygenation in the isolated, perfused rat liver. J Cell Biol 1983; 97: 778786.
  • 18
    Mori M. Electron microscopic and new microscopic studies of hepatocyte cytoskeleton: physiological and pathological relevance. J Electron Microsc 1994; 43: 347355.
  • 19
    Oshio C, Phillips MJ. Contractility of bile canaliculi: implications for bile flow. Science 1981; 212: 10411042.
  • 20
    Watanabe N, Tsukada N, Smith CR, Phillips MJ. Motility of bile canaliculi in the living animal: implications for bile flow. J Cell Biol 1991; 113: 10691080.
  • 21
    Cooper JA. Effects of cytochalasin and phalloidin on actin. J Cell Biol 1987; 105: 14731478.
  • 22
    Phillips MJ, Oshio C, Miyari M, Smith CR. Intrahepatic cholestasis as a canalicular motility disorder. Evidence using cytochalasin. Lab Invest 1983; 48: 205211.
  • 23
    Oda M, Phillips MJ. Bile canalicular membrane pathology in cytochalasin B-induced cholestasis. Lab Invest 1977; 37: 350356.
  • 24
    McCord JM. Oxygen derived free radicals in postischemic tissue injury. N Engl J Med 1985; 312: 159163.
  • 25
    González-Flecha B, Cutrín JC, Boveris A. Time course and mechanism of oxidative stress and tissue damage in rat liver subjected to in vivo ischemia-reperfusion. J Clin Invest 1993; 91: 456464.
  • 26
    Shelanski ML. Intracellular ionic calcium and the cytoskeleton in living cells. Ann N Y Acad Sci 1990; 568: 121124.
  • 27
    Albano E, Bellomo G, Parola M, Carini R, Dianzani MU. Stimulation of lipid peroxidation increases the intracellular calcium content of isolated hepatocytes. Biochim Biophys Acta 1991; 1091: 310316.
  • 28
    Phelps PC, Smith MW, Trump BF. Cytosolic ionized calcium and bleb formation following acute cell injury of cultured rabbit renal tubular cells. Lab Invest 1989; 60: 630642.
  • 29
    Bennet J, Weeds A. Calcium and the cytoskeleton. Br Med Bull 1993; 42: 385390.
  • 30
    Arias IM, Che M, Gatmaitan Z, Leveille C, Nishida T, St. Pierre M. The biology of the bile canaliculus, 1993. Hepatology 1993; 17: 318329.
  • 31
    Kitamura T, Brauneis U, Gatmaitan Z, Arias IM. Extracellular ATP, intracellular calcium and canalicular contraction in rat hepatocyte doublets. Hepatology 1991; 14: 640647.
  • 32
    Che M, Nishida T, Gatmaitan Z, Arias IM. A nucleoside transporter is functionally linked to ectonucleotidases in rat liver canalicular membrane. J Biol Chem 1992; 267: 96849688.
  • 33
    Nishida T, Che M, Gatmaitan Z, Arias IM. Structure-specific inhibition by bile acids of adenosine triphosphate—dependent taurocholate transport in rat canalicular membrane vesicles. Hepatology 1995; 21: 10581062.