SEARCH

SEARCH BY CITATION

References

  • 1
    Perlmutter DH. Liver disease in α 1-antitrypsin deficiency. OcknerRK, BoyerJ, eds. In: Progress in Liver Disease Vol. IX. Philadelphia: Saunders, 1993: 139165.
  • 2
    Wilson-Cox D. Alpha-1-antitrypsin deficiency. ScriverCR, BeaudetAL, SlyWS, ValleD, eds. In: The Metabolic Basis of Inherited Disease. New York; McGraw-Hill, Inc., 1989: 24092437.
  • 3
    Silverman EK, Miletich JP, Pierce JA, Sherman LA, Broze GJ, Campbell EJ. α1-antitrypsin deficiency: prevalence estimation from direct population screening. American Review of Respiratory Disease 1989; 140: 961966.
  • 4
    Perlmutter DH, Cole FS, Kilbridge P, Rossing TH, Colten HR. Expression of α1-proteinase inhibitor gene in human monocytes and macrophages. Proc Natl Acad Sci U S A 1985; 82: 795799.
  • 5
    Molmenti E, Perlmutter DH, Rubin DC. Cell-specific expression of α1-antitrypsin in human intestinal epithelium. J Clin Invest 1993; 2: 20222034.
  • 6
    Kelsey GD, Povey S, Bygrave AE, Lovell-Badge RH. Species- and tissue-specific expression of human α1-antitrypsin in transgenic mice. Genes Dev 1987; 2: 161171.
  • 7
    Koopman P, Povey S, Lovell-Badge RH. Widespread expression of human α1-antitrypsin in transgenic mice revealed by in situ hybridization. Genes Dev 1989; 3: 1525.
  • 8
    Carlson JA, Rogers BB, Sifers RN, Hawkins HK, Finegold MJ, Woo SLC. Multiple tissues express α1-antitrypsin in transgenic mice and man. J Clin Invest 1988; 2: 2636.
  • 9
    Dycaico JM, Grant SGN, Felts K, Nichols WS, Geller SA, Hager JH, Pollard AJ. et al. Neonatal hepatitis induced by α1-antitrypsin:a transgenic mouse model. Science 1988; 242: 14041412.
  • 10
    Jeppsson J-O. Amino acid substitution Glu-Lys in α1-antitrypsin PiZ. FEBS Lett 1976; 65: 195197.
  • 11
    Owen MC, Carrell RW. Alpha-l-antitrypsin:sequence of the Z variant tryptic peptide. FEBS Lett 1976; 2: 247249.
  • 12
    Yoshida A, Lieberman J, Gaidulis L, Ewing C. Molecular abnormality of human α1-antitrypsin variant (PiZ) associated with plasma activity efficiency. Proc Natl Acad Sci U S A 1976; 2: 13241328.
  • 13
    Kidd VJ, Wallace RB, Itakura K, Woo SLC. Alpha-1-antitrypsin deficiency detection by analysis of mutation of the gene. Nature 1983; 2: 230234.
  • 14
    Perlmutter DH, Kay RM, Cole FS, Rossing TH, Van Thiel DH, Colten HR. The cellular defect in α1-proteinase inhibitor deficiency is expressed in human monocytes and in xenopus oocytes injected with human liver mRNA. Proc Natl Acad Sci U S A 1985; 2: 69186921.
  • 15
    Mornex J-F, Chytil-Weir A, Martinet Y, Courtney M, LeCocq J-P, Crystal RG. Expression of the α1-antitrypsin gene in mononuclear phagocytes of normal and α1-antitrypsin deficient individuals. J Clin Invest 1986; 77: 19521961.
  • 16
    Foreman RC, Judah JD, Colman A. Xenopus oocytes can synthesize but do not secrete the Z variant of human α1-antitrypsin. FEBS Lett 1984; 2: 8488.
  • 17
    Foreman RC. Disruption of the lys 290-glu342 salt bridge in human α1-antitrypsin does not prevent its synthesis and secretion. FEBS Lett 1987; 2: 7982.
  • 18
    Brantly M, Courtney M, Crystal RG. Repair of the secretion of defect in the Z form of α1-antitrypsin by addition of a second mutation. Science 1988; 242: 17001702.
  • 19
    McCracken AA, Kruse KB, Brown JL. Molecular basis for defective secretion of variants having altered potential for salt bridge formation between amino acids 240 and 242. Mol Cell Biol 1989; 2: 14081414.
  • 20
    Sifers RN, Hardick CP, Woo SLC. Disruption of the 240–342 salt bridge is not responsible for the defect of the PiZ α1-antitrypsin variant. J Biol Chem 1989; 2: 29973001.
  • 21
    Wu Y, Foreman RC. The effect of amino acid substitutions at position 342 on the secretion of human α1-antitrypsin from xenopus oocytes. FEBS Lett 1990; 268: 2123.
  • 22
    McCracken AA, Kruse KB, Valentine J, Roberts G, Yohannes TZ, Brown JL. Construction and expression of α1-protease inhibitor mutants and the effect of these mutations on secretion of variant inhibitors. J Biol Chem 1991; 2: 75787582.
  • 23
    Carrell RW. α1-Antitrypsin: molecular pathology, leukocytes and tissue damage. J Clin Invest 1986; 77: 14271431.
  • 24
    Carlson JA, Rogers BB, Sifers RN, Finegold MJ, Clift SM, DeMayo FJ, Bullock DW. et al. Accumulation of PiZ α1-antitrypsin causes liver damage in transgenic mice. J Clin Invest 1989; 2: 11831190.
  • 25
    Geller SA, Nichols WS, Dycaico MJ, Felts KA, Sorge JA. Histopathology of α1-antitrypsin liver disease in a transgenic mouse model. Hepatology 1990; 2: 4047.
  • 26
    Geller SA, Nichols WS, Kim SS, Tolmachoff T, Lee S, Dycaico MJ, Felts K, Sorge JA. Hepatocarcinogenesis is the sequel to hepatitis in Z #2 α1-antitrypsin transgenic mice: histopathological and DNA ploidy studies. Hepatology 1994; 19: 389397.
  • 27
    Perlmutter DH. The cellular basis for liver injury in α1-antitrypsin deficiency. Hepatology 1991; 2: 172185.
  • 28
    Sveger T, Eriksson S. The liver in adolescents with α1-antitrypsin deficiency. Hepatology 1995; 22: 514517.
  • 29
    Stein PE, Carrell RW. What do dysfunctional serpins tell us about molecular mobility and disease? Nat Struct Biol 1995; 2: 96101.
  • 30
    Wu Y, Whitman I, Molmenti E, Moore K, Hippenmeyer P, Perlmutter DH. A lag in intracellular degradation of mutant α1-antitrypsin correlates with the liver disease phenotype in homozygous PiZZ α1-antitrypsin deficiency. Proc Natl Acad Sci U S A 1994; 2: 90149018.
  • 31
    Teckman TH, Perlmutter DH. The endoplasmic reticulum degradation pathway for misfolded α1-antitrypsin mutants Z and S is distinct from that for an unassembled membrane protein, the asialoglycoprotein receptor H2 subunit. J Biol Chem 1996; 271: 1321513220.
  • 32
    Qu D, Teckman TH, Omura S, Perlmutter DH. Degradation of mutant secretory protein, α1-antitrypsin Z. in the endoplasmic reticulum requires proteasome activity. J Biol Chem 1996; 2: 2279122795.
  • 33
    Lomas DA, Evans DL, Finch JJ, Carrell RW. The mechanism of Z α1-antitrypsin accumulation in the liver. Nature 1992; 2: 605607.
  • 34
    Mast AE, Enghild JJ, Salvesen G. Conformation of the reactive site loop of α1-proteinase inhibitor probed by limited proteolysis. Biochemistry 1992; 2: 27202728.
  • 35
    Huber R, Carrell RW. Implications of the three-dimensional structure of α1-antitrypsin for structure and function of serpins. Biochemistry 1990; 2: 4853.
  • 36
    Lomas DA, Finch JT, Seyama K, Nukiwa T, Carrell RW. α1-Antitrypsin Siiyama (Ser53 [RIGHTWARDS ARROW] Phe): further evidence for intracellular loop-sheet polymerization. J Biol Chem 1993; 268: 1533315335.
  • 37
    Lomas DA, Elliott PR, Sidhar SK, Foreman RC, Finch JT, Cox DW, Whissock JC, Carrell RW. α1-antitrypsin Mmalton (Phe52deleted) forms loop-sheet polymers in vivo: evidence for the C-sheet mechanism of polymerization. J Biol Chem 1995; 270: 1686416874.
  • 38
    Yu M-H, Lee KN, Kim J. The Z type variation of human α1-antitrypsin causes a protein folding defect. Nat Struct Biol 1995; 2: 363367.
  • 39
    Hurtley SM, Helenius A. Protein oligomerization in the endoplasmic reticulum. Annu Rev Cell Biol 1989; 2: 277307.
  • 40
    Tatu U, Hammond C, Helenius A. Folding and oligomerization of influenza hemagglutinin in the ER and the intermediate compartment. EMBO J 1995; 2: 13401348.
  • 41
    Kim J, Lee KN, Yi G-S, Yu M-H. A thermostable mutation located at the hydrophobic core of α1-antitrypsin suppresses the folding defect of the Z-type variant. J Biol Chem 1995; 2: 85978601.
  • 42
    Sidhar SK, Lomas DA, Carrell RW, Foreman RC. Mutations which impede loop-sheet polymerization enhance the secretion of human α1-antitrypsin deficiency variants. J Biol Chem 1995; 2: 83938396.
  • 43
    Eldering E, Verpy E, Roem D, Meo T, Tosi M. COOH-terminal substitutions in the serpin C1 inhibitor that causes loop overinsertion and subsequent multimerization. J Biol Chem 1995; 2: 25792587.
  • 44
    Rothman JE, Wieland FT. Protein sorting by transport vesicles. Science 1996; 2: 227234.
  • 45
    Bednarek SY, Ravazzola M, Hosobuchi M, Amherdt M, Perrelet A, Schekman R, Orci L. COPI- and COPII-coated vesicles bud directly from the endoplasmic reticulum in yeast. Cell 1995; 83: 11831196.
  • 46
    Schinimoller F, Singer-Kruger B, Schroder S, Kruger U, Barlowe C, Reizman H. The absence of Emp24p, a component of ER-derived COPII-coated vesicles, causes a defect in transport of selected protein to the Golgi. EMBO J 1995; 2: 13291339.
  • 47
    Stamnes MA, Craighead MW, Hoe MH, Lampen N, Geromanos S, Tempst P, Rothman JE. An integral membrane component of coatomer-coated transport vesicles defines a family of proteins involved in budding. Proc Natl Acad Sci U S A 1995; 2: 80118015.
  • 48
    Gething M-J, Sambrook J. Protein folding in the cell. Nature 1992; 2: 3445.
  • 49
    Melnick J, Dul JL, Argon Y. Sequential interaction of the chaperones BiP and GRP94 with immunoglobulin chains in the endoplasmic reticulum. Nature 1994; 2: 373375.
  • 50
    Kuznetsov G, Chen LB, Nigam SK. Several endoplasmic reticulum stress proteins, including ERp72, interact with thyroglobulin during its maturation. J Biol Chem 1994; 2: 2299022995.
  • 51
    Degen E, Williams DB. Participation of a novel 88-kD protein in the biogenesis of murine class I histocompatibility molecules. J Cell Biol 1991; 2: 10991115.
  • 52
    Hochstenbach F, David V, Watkins J, Brenner MB. Endoplasmic reticulum resident protein of 90 kilodaltons associates with T- and B-cell antigen receptors and major histocompatibility complex antigens during their assembly. Proc Natl Acad Sci U S A 1992; 2: 47344738.
  • 53
    Ou W-J, Cameron PH, Thomas DY, Bergeron JJM. Association of folding intermediates of glycoproteins with calnexin during protein maturation. Nature 1993; 364: 771776.
  • 54
    Ware FE, Vassilakos A, Peterson PA, Jackson MR, Lehrman MA, Williams DB. The molecular chaperone calnexin binds Glci Man9GlcNAc2oligosaccharide as an initial step in recognizing unfolded glycoproteins. J Biol Chem 1995; 2: 46974704.
  • 55
    Hebert DN, Foellmer B, Helenius A. Glucose trimming and reglucosylation determine glycoprotein association with calnexin in the endoplasmic reticulum. Cell 1995; 2: 425453.
  • 56
    Sousa MC, Ferrero-Garcia MA, Parodi AJ. Recognition of the oligosaccharide and protein moieties of glycoproteins by the UDP-glucose :glycoprotein glucosyltransferase. Biochemistry 1992; 2: 97105.
  • 57
    Bonifacino JS, Suzuki CK, Lippincott-Schwartz J, Weissman AM, Klausner RD. Pre-Golgi degradation of newly synthesized T-cell antigen receptor chains: intrinsic sensitivity and the role of subunit assembly. J Cell Biol 1989; 109: 7383.
  • 58
    Raposo G, van Santen HM, Liejendekker R, Geuze HJ, Ploegh HL. Misfolded major histocompatibility complex class I molecules accumulate in an expanded ER-Golgi intermediate compartment. J Cell Biol 1995; 2: 14031419.
  • 59
    Perlmutter DH. Alpha-1-antitrypsin deficiency. In: WalkerWA, DurieP, HamiltonR, WatkinsJB, Walker-SmithJ, eds. Pediatric Gastrointestinal Disease. Toronto; BC Decker, 1991: 976991.
  • 60
    Owen MC, Carrell RW. Alpha-1-antitrypsin: molecular abnormality of S variant. BMJ 1976; 1: 130131.
  • 61
    Cheng SH, Gregory RJ, Marshall J, Paul S, Souza DW, White GA, O'Riordan CR. et al. Defective intracellular transport and processing of CFTR is the molecular basis of most cystic fibrosis. Cell 1990; 2: 827834.
  • 62
    Ward CL, Omura S, Kopito RR. Degradation of CFTR by the ubiquitinproteasome pathway. Cell 1995; 83: 121127.
  • 63
    Jensen TJ, Loo MA, Find S, Williams DB, Goldberg AL, Riordan JR. Multiple proteolytic systems, including the proteasome, contribute to CFTR processing. Cell 1995; 83: 129135.
  • 64
    Herskko A, Ciechanover A. The ubiquitin system for protein degradation. Annu Rev Biochem 1992; 61: 761807.
  • 65
    Jackson MR, Cohen-Doyle MF, Petersen PA, Williams DB. Regulation of MHC class I transport by the molecular chaperone, calnexin (p88, IP90). Science 1994; 2: 384387.
  • 66
    Bergeron JJM, Brenner MB, Thomas DY, Williams DB. Calnexin: a membrane-bound chaperone of the endoplasmic reticulum. Trends Biochem Sci 1994; 19: 124128.
  • 67
    Gaczynska M, Rock KL, Goldberg AL. Gamma-interferon and expression of MHC genes regulate peptide hydrolysis by proteasomes. Nature 1993; 2: 264267.
  • 68
    Chisari FV, Klopchin K, Moriyama T, Pasquinelli C, Dunsford HA, Sell S, Pinkert CA. et al. Molecular pathogenesis of hepatocellular carcinoma in hepatitis B virus transgenic mice. Cell 1989; 59: 11451156.
  • 69
    Chisari FV. Hepatitis B virus transgenic mice: insights into the virus and the disease. Hepatology 1995; 22: 13171325.
  • 70
    Bathurst IC, Errington DM, Foreman RC, Judah JD, Carrell RW. Human Z alpha-1-antitrypsin accumulates intracellularly and stimulates lysosomal activity when synthesized in the xenopus oocyte. FEBS Lett 1985; 2: 304308.
  • 71
    Dunn WA. Studies on the mechanism of autophagy: formation of autophagic vacuole. J Cell Biol 1991; 110: 19231933.
  • 72
    Seglen PO, Gordon P. Amino acid control of autophagic sequestration and protein degradation in isolated rat hepatocytes. J Cell Biol 1984; 2: 435444.
  • 73
    Valetti C, Grossi CE, Milstein C, Sitia R. Russel bodies: a general response of secretory cells to synthesis of mutant immunoglobulin which can neither exit from, nor be degraded in, the endoplasmic reticulum. J Cell Biol 1991; 115: 983994.
  • 74
    Cox JS, Shamu CE, Walter P. Trans criptional induction of genes encoding endoplasmic reticulum resident proteins requires a transmembrane protein kinase. Cell 1994; 2: 11971206.
  • 75
    Mori K, Ma W, Gething M-J, Sambrook J. A transmembrane protein with a cdc2+/CDC28-related kinase activity is required for signaling from the ER to the nucleus. Cell 1993; 2: 743756.
  • 76
    Batchvarova N, Wang X-Z, Ron D. Inhibition of adipogenesis by the stress-induced protein CHOP (gadd!53). EMBO J 1995; 2: 46544661.
  • 77
    Pahl HL, Sester M, Gurgert H-G, Baeuerle PA. Activation of transcription factor NF-kB by the adenovirus E3/19Kprotein requires its ER retention. J Cell Biol 1996; 2: 511522.
  • 78
    Perlmutter DH, Schlesinger MJ, Pierce JA, Punsal PI, Schwartz AL. Synthesis of stress proteins is increased in individuals with homozygous PiZZ α1-antitrypsin deficiency and liver disease. J Clin Invest 1989; 2: 15551561.
  • 79
    Gerner EW, Schneider MJ. Induced thermal resistance in HeLa cells. Nature 1975; 2: 500503.
  • 80
    Hope PL, Hall MA, Millward-Sadler GH. Normand 1C. Alpha-1-antitrypsin deficiency presenting as a bleeding diathesis in the newborn. Arch Dis Child 1982; 2: 6870.
  • 81
    Psacharopoulos HT, Mowat AP, Cook PJL, Carlile PA, Portmann B, Rodeck CH. Outcome of liver disease associated with α1-antitrypsin deficiency (PiZZ): implication for genetic counselling and antenatal diagnosis. Arch Dis Child 1983; 58: 882887.
  • 82
    Ghishan FR, Gray GF, Greene HL. α1-Antitrypsin deficiency presenting with ascites and cirrhosis in the neonatal period. Gastroenterology 1983; 2: 435438.
  • 83
    Nebbia G, Hadchouel M, Odievre M, Alagille D. Early assessment of evolution of liver disease associated with α1-antitrypsin deficiency in childhood. J Pediatr 1983; 2: 661665.
  • 84
    Ibarguen E, Gross CR, Savik SK, Sharp HL. Liver disease in α1-antitrypsin deficiency: prognostic indicators. J Pediatr 1990; 117: 864870.
  • 85
    Sharp HL, Bridges RA, Krivit W, Freier EF. Cirrhosis associated with alpha-1-antitrypsin deficiency: a previously unrecognized inherited disorder. J Lab Clin Med 1969; 73: 934939.
  • 86
    Eriksson S, Carlson J, Velez R. Risk of cirrhosis and primary liver cancer in α1-antitrypsin deficiency. N Engl J Med 1989; 314: 736739.
  • 87
    Sveger T. Liver disease in a 1-antitrypsin deficiency detected by screening of 200,000 infants. N Engl J Med 1976; 294: 12161221.
  • 88
    Pittschieler K. Liver disease and heterozygous α1-antitrypsin deficiency. Acta Paediatr Scand 1991; 2: 323327.
  • 89
    Hodges JR, Millward-Sadler GH, Barbatis C, Wright R. Heterozygous MZ α1-antitrypsin deficiency in adults with chronic active hepatitis and cryptogenic cirrhosis. N Engl J Med 1981; 2: 357360.
  • 90
    Carlson J, Eriksson S. Chronic cryptogenic liver disease and malignant hepatoma in intermediate α1-antitrypsin deficiency identified by a PiZ-specific monoclonal antibody. Scand J Gastroenterol 1985; 2: 835842.
  • 91
    Vecchio FM, Fabiano A, Orsini G, Ragusa D, Massi G. Alpha-1-antitrypsin MZ phenotype and cryptogenic chronic liver disease in adults. Digestion 1983; 27: 100104.
  • 92
    Propst T, Propst A, Dietze O, Judmaier G, Braunsteiner H, Vogel W. High prevalence of viral infections in adults with homozygous and heterozygous α1-antitrypsin deficiency and chronic liver disease. Ann Intern Med 1992; 2: 641645.
  • 93
    Dubuisson J, Hsu HH, Cheung RC, Greenberg HB, Russell DG, Rice CM. Formation and intracellular localization of hepatitis C virus envelope glycoprotein complexes expressed by recombinant vaccinia and sindbis viruses. J Virol 1994; 2: 61476160.
  • 94
    Dubussion J, Rice CM. Hepatitis C virus glycoprotein folding: disulfide bond formation and association with calnexin. J Virol 1996; 70: 778786.
  • 95
    Davis ID, Burke B, Freese D, Sharp HL, Kim Y. The pathologic spectrum of the nephropathy associated with α1-antitrypsin deficiency. Hum Pathol 1992; 2: 5762.
  • 96
    Moroz SP, Cutz E, Balfe JW, Sass-Kortsak A. Membranoproliferative glomerulonephritis in childhood cirrhosis associated with α1-AT deficiency. Pediatrics 1976; 2: 232238.
  • 97
    Cox DW, Huber O. Rheumatoid arthritis and α1-antitrypsin. Lancet 1976: 12161217.
  • 98
    Novis BH, Young GO, Bank S, Marks IN. Chronic pancreatitis and α1-antitrypsin deficiency. Lancet 1975; 2: 748749.
  • 99
    Pittelkow MR, Smith KG, Su WPD. Alpha-1-antitrypsin deficiency and panniculitis: perspectives on disease relationship and replacement therapy. Am J Med 1988; 84: 8086.
  • 100
    Andre F, Andre C, Lambert R. Prevalence of α1-antitrypsin deficiency in patients with gastric or duodenal ulcers. Biomedicine 1974; 2: 222224.
  • 101
    Klasen EC, Polanco I, Biemond I, Vazquez C, Pena AS. α1-Antitrypsin and coeliac disease in Spain. Gut 1984; 2: 948950.
  • 102
    Segelmark M, Elzouki AN, Wieslander J, Eriksson S. The PiZ gene of alpha-1-antitrypsin as a determinant of outcome in PR3-ANCA-positive vasculitis. Kidney Int 1995; 2: 884850.
  • 103
    Strife CF, Hug G, Chuck G, McAdams AJ, Davis CH, Kline JJ. Membrano -proliferative glomerulonephritis and α1-antitrypsin deficiency in children. Pediatrics 1983; 2: 8892.
  • 104
    Curiel DT, Holmes MD, Okayama H, Brantly ML, Vogelmeier C, Travis WD, Stier LE. et al. Molecular basis of the liver and lung disease associated with the α1-antitrypsin deficiency allele M Malton. J Biol Chem 1989; 2: 1393813945.
  • 105
    Reid CJ, Wiener CJ, Cox DW, Richter JE, Geisinger KR. Diffuse hepatocellular dysplasia and carcinoma associated with M Malton variant of α1-antitrypsin. Gastroenterology 1987; 93: 181187.
  • 106
    Crowley JJ, Sharp HL, Freier E, Ishak KG, Schow P. Fatal liver disease associated with α1-antitrypsin deficiency PiM/PiM duarte. Gastroenterology 1987; 2: 242244.
  • 107
    Mowat AP. Hepatitis and cholestasis in infancy: intrahepatic disorders. In: MowatAP, ed. Liver Disorders in Childhood. London: Butterworths, 1992: 50.
  • 108
    Qizibash A, Yong-Pong O. Alpha-1-antitrypsin liver disease: differential diagnosis of PAS-positive diastase-resistant globules in liver cells. Am J Clin Pathol 1983; 79: 697702.
  • 109
    Hadchouel M, Gautier M. Histopathologic study of the liver in the early cholestatic phase of α1-antitrypsin deficiency. J Pediatr 1976; 2: 211215.
  • 110
    Blenkinsopp WK, Haffenden GP. Alpha-1-antitrypsin bodies in liver. J Clin Pathol 1977; 30: 132137.
  • 111
    Feldmann G, Bignon J, Chahinian P, Degott C, Benhamou JP. Hepatocyte ultrastructural changes in α1-antitrypsin deficiency. Gastroenterology 1974; 67: 12141224.
  • 112
    Yunis EJ, Agostini RM, Glew RH. Fine structural observations of the liver in α1-antitrypsin deficiency. Am J Clin Pathol 1976; 2: 265286.
  • 113
    Eriksson S. Alpha-1-antitrypsin deficiency and liver cirrhosis in adults. Acta Med Scand 1987; 2: 462467.
  • 114
    Filipponi F, Soubrane O, Labrousse F, Divictor D, Bernard O, Valayer J, Houssin D. Liver transplantation for end-stage liver disease associated with alpha-1-antitrypsin deficiency in children: pretransplant natural history, timing and results of transplantation. J Hepatol 1994; 20: 7278.
  • 115
    Casavilla FA, Reyes J, Tzakis A, Wright HI, Gavaler JS, Lendoire J, Gordon R. et al. Liver transplantation for neonatal hepatitis as compared to the other two leading indications for liver transplantation in children. Hepatol 1994; 21: 10351039.
  • 116
    Wewers MD, Casolaro MA, Sellers SE, Swayze SC, McPhaul KM, Wittes JT, Crystal RG. Replacement therapy for α1-antitrypsin deficiency associated with emphysema. N Engl J Med 1987; 316: 10551062.
  • 117
    Hubbard RC, McElvaney NG, Sellers SE, Healy JT, Czerski DB, Crystal RG. Recombinant DNA-produced α1-antitrypsin administered by aerosol augments lower respiratory tract antineutrophil elastase defense in individuals with α1-antitrypsin deficiency. J Clin Invest 1989; 84: 13491354.
  • 118
    Crystal RG. α1-Antitrypsin deficiency, emphysema and liver disease: genetic basis and strategies for therapy. J Clin Invest 1990; 95: 13431352.
  • 119
    Wilson JM. Gene therapy for cystic fibrosis: challenges and future directions. J Clin Invest 1995; 96: 25472554.
  • 120
    Wilson JM. Molecular medicine: adenoviruses as gene-delivery vehicles. N Engl J Med 1996; 335: 11851187.
  • 121
    Naldini L, Blomer U, Gallay P, Ory D, Mulligan R, Gage FH, Verma IM. et al. In vivo gene delivery and stable transduction of nondividing cells by a lentiviral vector. Science 1996; 2: 263267.
  • 122
    Perlmutter DH, Glover GI, Rivetna M, Schasteen CS, Fallon RJ. Identification of serpin-enzyme complex (SEC) receptor on human hepatoma cells and human monocytes. Proc Natl Acad Sci U S A 1990; 87: 37533757.
  • 123
    Perlmutter DH. The SEC receptor: a possible link between neonatal hepatitis in α1-antitrypsin deficiency and Alzheimer's disease. Pediatr Res 1994; 36: 271277.
  • 124
    Savransky E, Hytiroglou P, Harpaz N, Thung SN, Johnson EM. Correcting the PiZ defect in the α1-antitrypsin gene of human cells by targeted homologous recombination. Lab Invest 1994; 2: 676683.
  • 125
    Castanotto D, Rossi JJ, Sarver N. Antisense catalytic RNAs as therapeutic agents. Adv Pharmacol 1994; 25: 289317.
  • 126
    Askari FK, McDonnell WM. Molecular medicine: antisense-oligonucleotide therapy. N Engl J Med 1996; 334: 316318.
  • 127
    Teckman JH, Perlmutter DH. Conceptual advances in the pathogenesis and treatment of childhood metabolic liver disease. Gastroenterology 1995; 2: 12631279.
  • 128
    Lindmark B, Millward-Sadler H, Callea F, Eriksson S. Hepatocyte inclusions of alpha-1-antitrypsin in a patient with partial deficiency of α1-antichymotrypsin and chronic liver disease. Histopathology 1990; 2: 221225.
  • 129
    Wetsel RA, Kulics J, Lokki M-L, Kiepiela P, Akama H, Johnson CAC, Densen P. et al. Type II human complement C2 deficiency. J Biol Chem 1996; 2: 58245831.
  • 130
    Callea F, deVos R, Togni R, Tardanico R, Vanstapel MJ, Desmet VJ. Fibrinogen inclusions in liver cells: a new type of ground-glass hepatocyte. Immune light and electron microscopic characterization. Histopathology 1986; 10: 6573.
  • 131
    Miura O, Aoki N. Impaired secretion of mutant α2-plasmin inhibitor (α2-PI-Nara) from COS-7 and HepG2 cells: molecular and cellular basis for hereditary deficiency of α2-plasmin inhibitor. Blood 1990; 75: 10921096.
  • 132
    Yamamoto K, Tamimoto M, Emi N, Matsushita T, Takamatsu J, Saito H. Impaired secretion of the elongated mutant of protein C (protein C-Nagoya). J Clin Invest 1992; 2: 24392446.
  • 133
    Hobbs HH, Russell DW, Brown MS, Goldstein JL. The LDL receptor locus in familial hypercholesterolemia: mutational analysis of a membrane protein. Annu Rev Genet 1990; 24: 133170.
  • 134
    Sandhoff K, Conzelmann E, Neufeld EF, Kaback MM, Suzuki K. The Gm2 gangliosidoses. In: ScriverCR, BeaudetAL, SlyWS, ValleD, eds. The Metabolic Basis of Inherited Disease. Ed 6. New York: McGraw-Hill, 1989: 18071839.
  • 135
    Wetterau JR, Aggerbeck LP, Bouma M-E, Eisenberg C, Munok A, Hermier M, Schmitz J. et al. Absence of microsomal triglyceride transfer protein in individuals with abetalipoproteinemia. Science 1992; 2: 9991001.
  • 136
    Sharp D, Blinderman L, Combs KA, Kienzle B, Ricci B, Wager-Smith K, Gil CM. et al. Cloning and gene defects in microsomal triglyceride transfer protein associated with abetalipoproteinemia. Nature 1993; 2: 6569.
  • 137
    Vesa J, Hellsten E, Verkruyse LA, Camp LA, Rapola J, Santavuori P, Hofmann SL. et al. Mutations in the palmitoyl protein thioesterase gene causing infantile neuronal ceroid lipofuscinosis. Nature 1995; 376: 584587.
  • 138
    Fransen JAM, Hauri H-P, Ginsel LA, Nairn HY. Naturally occurring mutations in intestinal sucrase-isomaltase provide evidence for the existence of an intracellular sorting signal in the isomaltase subunit. J Cell Biol 1991; 2: 4557.
  • 139
    Kim PS, Kwon O-Y, Arvan P. An endoplasmic reticulum storage disease causing congenital goiter with hypothyroidism. J Cell Biol 1996; : 517527.
  • 140
    Bonadio J, Byers PH. Subtle structural alterations in the chains of type I procollagen produce osteogenesis imperfecta type II. Nature 1985; 316: 363366.
  • 141
    Prockop DJ, Chu M-L, DeWet W, Myers JC, Pihlajamiemi T, Ramirez F, Sippola M. Mutations in osteogenesis imperfecta leading to the synthesis of abnormal type I procollagens. Ann N Y Acad Sci 1985; 460: 289297.
  • 142
    Schmale H, Bahnsen U, Richter D. Structure and expression of the vasopressin precursor gene in central diabetes insipidus. Ann N Y Acad Scim 1993; 689: 7482.