• 1
    Nakajima T, Tajima Y, Sugano I, Nagao K, Kondo Y, Wada K. Intrahepatic cholangiocarcinoma with sarcomatous change. Cancer 1993; 72: 18721877.
  • 2
    Haratake J, Horie A. An immunohistochemical study of sarcomatoid liver carcinomas. Cancer 1991; 68: 9397.
  • 3
    Haratake J, Yamada H, Horie A, Inokunia T. Giant cell tumor-like cholangiocarcinoma associated with systemic cholelithiasis. Cancer 1992; 69: 24442448.
  • 4
    Sell S. Is there a liver stem cell? Cancer Res 1990; 50: 38113815.
  • 5
    Sigal SH, Brill S, Fiorino AS, Reid LM. The liver as a stem cell and lineage system. Am J Physiol 1992; 263: G139G148.
  • 6
    Sell S, Dunaford HA. Evidence for the stem cell origin of hepatocellular carcinoma and cholangiocarcinoma. Am J Pathol 1989; 134: 13471363.
  • 7
    Hixson DC, Paris RA, Thompson NL. An antigenic portrait of the liver during carcinogenesis. Pathobiology 1990; 58: 6577.
  • 8
    Shiojiri N, Lemire JM, Fausto N. Cell lineages and oval cell progenitors in rat liver development. Cancer Res 1991; 51: 26112620.
  • 9
    Sell S, Salman J. Light- and electron-microscopic autoradiographic analysis of proliferating cells during the early stages of chemical hepatocarcinogenesis in the rat induced by feeding N-2-fluorenylacetamide in a choline-deficient diet. Am J Pathol 1984; 114: 287300.
  • 10
    Factor VM, Radaeva SA, Thorgeirsson SS. Origin and fate of oval cells in dipin-induced hepatocarcinogenesis in the mouse. Am J Pathol 1994; 145: 409422.
  • 11
    Faris RA, Monfils BA, Dunsford HA, Hixson DC. Antigenic relationship between oval cells and a subpopulation of hepatic foci, nodules, and carcinomas induced by the “resistant hepatocytes” model system. Cancer Res 1991; 51: 13081317.
  • 12
    Dabeva MD, Shafritz DA. Activation, proliferation, and differentiation of progenitor cells into hepatocytes in the d-galactosamine model of liver regeneration. Am J Pathol 1993; 143: 16061620.
  • 13
    Germain L, Noel M, Gourdeau H, Marceau N. Promotion of growth and differentiation of rat ductular oval cells in primary culture. Cancer Res 1988; 48: 368378.
  • 14
    Lenzi R, Liu MH, Tarsetti F, Slott PA, Alpini G, Zhai W, Paronetto F, et al. Histogenesis of bile duct-like cells proliferating during ethionine hepatocarcinogenesis. Lab Invest 1992; 66: 390402.
  • 15
    Sarraf C, Lalani E, Golding M, Anikumar TV, Poulsom R, Alison M. Cell behavior in the acetylaminofluorene-treated regenerating rat liver. Am J Pathol 1994; 145: 11141126.
  • 16
    Elmore LW, Sirica AE. “Intestinal type” of adenocarcinoma preferentially induced in right/caudate liver lobes of rats treated with furan. Cancer Res 1993; 53: 254259.
  • 17
    Tatematsu M, Kazu T, Medline A, Farber E. Intestinal metaplasia as a common option of oval cells in relation to cholangiofibrosis in liver of rats exposed to 2-acetylaminofluorene. Lab Invest 1985; 52: 354362.
  • 18
    Rao MS, Bendayan M, Kimbrough RD, Reddy JK. Characterization of pancreatic-type specific tissue in the liver of rat induced by polychlorinated biphenyls. J Histochem Cytochem 1986; 34: 197201.
  • 19
    Steinberg P, Steinbrecher R, Radaeva S, Schirmacher P, Peter D, Oesch F, Bannasch P. Oval cell lines OC/CDE 6 and OC/CDE 22 give rise to cholangio-cellular and undifferentiated carcinomas after transformation. Lab Invest 1994; 71: 700709.
  • 20
    Sirica AE. Ductular hepatocytes. Histol Histopathol 1994; 145: 375383.
  • 21
    Desmet V, Roskams T, von Eyken P. Ductular reaction in the liver. Pathol Res Pract 1995; 155: 5361.
  • 22
    Constantinides PG, Taylor SM, Jones PA. Phenotypic conversion of cultured mouse embryo cells by aza pyrimidine nucleosides. Dev Biol 1978; 66: 5771.
  • 23
    Constantinides PG, Jones PA, Gevers W. Functional striated muscle cells from non-myoblast precursors following 5-azacytidine treatment. Nature 1977; 267: 364366.
  • 24
    Benedict WF, Banerjee A, Gardner A, Jones PA. Induction of morphological transformation in mouse C3H/10T1/2 clone 8 cells and chromosomal damage in hamster A(T1) C1-3 cells by cancer chemotherapeutic agents. Cancer Res 1977; 37: 22022208.
  • 25
    Taylor SM, Jones PA. Multiple new phenotypes induced in 10T1/2 and 3T3 cells treated with 5-azacytidine. Cell 1979; 17: 771779.
  • 26
    Honda M, Enjoji M, Sakai H, Yamamoto I, Tsuneyoshi M, Nawata H. Intrahepatic cholangiocarcinoma with rhabdoid transformation. J Gastroenterol Hepatol 1996; 11: 711714.
  • 27
    Tsuneyoshi M, Daimaru Y, Hashimoto H, Enjoji M. Malignant soft tissue neoplasm with histologic features of renal rhabdoid tumors. An ultrastructural and immunohistochemical study. Hum Pathol 1985; 16: 12351242.
  • 28
    Hayata Y. H-1 cell line. In: OhnoS, SuganoH, eds. Culture of Human Carcinoma Cells. Tokyo: Asakura, 1975: 181183.
  • 29
    Enjoji M, Kajiyama K, Sakai H, Tsuneyoshi M, Nawata H. Sarcomatous and adenocarcinoma cell lines from the same nodule of cholangiocarcinoma. In Vitro Cell Dev Biol; in press.
  • 30
    Chomczynski P, Sacchi N. Single-step method of RNA isolation by acid guanidinium thiocyanate-phenol-chloroform extraction. Anal Biochem 1987; 162: 156159.
  • 31
    Morinaga T, Sakai M, Wegmann TG, Tamaoki T. Primary structures of human α-fetoprotein and its mRNA. Proc Natl Acad Sci U S A 1983; 80: 46044608.
  • 32
    Volpes RJ, von den Oord J, Desmet VJ. Integrins as differential cell lineage markers of primary liver tumors. Am J Pathol 1993; 142: 14831492.
  • 33
    Galle PR, Hofmann WJ, Walczak H, Schaller H, Otto G, Stremmel W, Krammer PH, et al. Involvement of the CD95 (APO-1/Fas) receptor and ligand in liver damage. J Exp Med 1995; 182: 12231230.
  • 34
    Azumi N, Battifora H. The distribution of vimentin and keratin in epithelial and non-epithelial neoplasms. Am J Clin Pathol 1987; 88: 286296.
  • 35
    Remarkers FCS, Haag D, Kont A, Moesker O, Jap PHK, Vooijs GP. Coexpression of keratin- and vimentin-type intermediate filaments in human metastatic carcinoma cells. Proc Natl Acad Sci U S A 1983; 80: 26182622.
  • 36
    Milani S, Herbst H, Schuppan D, Niedobitek G, Kim KY, Stein H. Vimentin expression of newly formed rat bile duct epithelial cells in secondary biliary fibrosis. Virchows Archiv A Pathol Anat 1989; 415: 237242.
  • 37
    Strain AJ, Wallace L, Joplin R, Daikuhara Y, Ishii T, Kelly DA, Neuberger JM. Characterization of biliary epithelial cells isolated from needle biopsies of human liver in the presence of hepatocyte growth factor. Am J Pathol 1995; 146: 537545.
  • 38
    Alison MR, Golding M, Sarraf CE, Edwards RJ, Lalani E. Liver damage in the rat induces hepatocytic stem cells from biliary epithelial cells. Gastroenterology 1996; 110: 11821190.
  • 39
    Germain L, Blouin M-J, Marceau N. Biliary epithelial and hepatocytic cell lineage relationships in embryonic rat liver as determined by the differential expression of cytokeratins, α-fetoprotein, albumin, and cell surface-exposed components. Cancer Res 1988; 48: 49094918.
  • 40
    Grubman SA, Perrone RD, Lee DW, Murray SL, Rogers LC, Wolkoff LI, Mulberg AE, et al. Regulation of intracellular pH by immortalized human intrahepatic biliary epithelial cell lines. Am J Physiol 1994; 266: G1060G1070.
  • 41
    Collins SJ, Ruscetti FW, Gallagher RE, Gallo RC. Terminal differentiation of human promyelocytic leukemia cells induced by dimethyl sulfoxide and other polar compounds. Proc Natl Acad Sci USA 1978; 75: 24582462.
  • 42
    Buckley AR, Leff MA, Buckley DJ, Magnuson NS, de Jong G, Gout PW. Alterations in pim-1 and c-myc expression associated with sodium butylate–induced growth factor dependency in autonomous rat Nb2 lymphoma cells. Cell Growth Diff 1996; 7: 17131721.