The existence of progenitor (stem) cells in the human liver remains a matter of debate. In rodent models of hepatocarcinogenesis and injury, oval cells proliferate in the periportal regions of the portal tracts and are suggested to derive from a stem cell compartment, because they are capable of differentiating into hepatocytes or biliary epithelial cells. In this study, the rat oval cell marker, OV-6 has been used to investigate the hypothesis that there are stem cells present in fetal and pediatric human liver. The pattern of OV-6 expression was compared with the established adult biliary cell markers human epithelial antigen-125 (HEA-125) and cytokeratin-19 (CK-19). In normal pediatric liver (n = 7), bile ducts and ductules were immunostained with CK-19 and HEA-125, whereas OV-6 staining was consistently negative. In fetal tissue (n = 10), ductal plate cells, primitive bile ducts, and hepatoblasts were stained with CK-19 and HEA-125 although only some of the ductal plate cells and hepatoblasts were OV-6 positive. In biliary atresia (n = 6) and α1, anti-trypsin deficiency (α1,AT) (n = 4), CK-19 and HEA-125 immunostained ductular proliferative cells that tended to form finely anastomosing ductules, whereas OV-6 staining was found more on discrete cells confined to portal tract margins. Additionally, in diseased liver, OV-6 was strongly positive in hepatocyte lobules with greatest intensity in the periseptal regions. This widespread hepatocyte OV-6 positivity suggests that the antibody may identify cells of a less differentiated phenotype (transitional hepatocytes) that have replaced the mature cells. Therefore, it is proposed that in human liver, OV-6 is recognizing cells with a progenitor stem cell-like phenotype with the capacity to differentiate into OV-6 positive ductular cells or lobular hepatocytes.