In the injured liver hepatic stellate cells (HSCs) undergo a dramatic phenotypic transformation known as “activation” in which they become myofibroblast-like and express high levels of the tissue inhibitor of metalloproteinase 1 (TIMP-1). HSC activation is accompanied by transactivation of the TIMP-1 promoter. Truncation mutagenesis studies delineated a minimal active promoter consisting of nucleotides −102 to +60 relative to the major start site for transcription. Removal of an AP-1 site located at nucleotides −93 to −87 caused almost a complete loss of promoter activity. Analysis of AP-1 DNA binding activities during culture activation of HSCs initially indicated transient expression of proteins capable of forming a low mobility AP-1 DNA binding complex (lm AP-1).lm AP-1 was maximally induced at 24 hours of culture and then fell to undetectable levels at 120 hours. Western blot studies showed that both c-Fos and c-Jun underwent similar transient inductions. These temporal changes in c-Fos and c-Jun activities were unexpected because TIMP-1 mRNA expression is not detected in HSCs until culture day 3 to 5 and is thereafter sustained at a high level. Previous work in other cell lineages has established a key role for Pea3 binding proteins (Ets-1) in AP-1 mediated transactivation of the TIMP-1 promoter. We show that HSCs express relatively low levels Ets-1 and Ets-2 and show that mutagenesis of the Pea3 DNA binding site in the TIMP-1 promoter has less than a twofold effect on its activity in activated HSCs. Further analysis of AP-1 DNA binding activities in 7- to 14-day culture activated HSCs led to the discovery of high mobility AP-1 complexes (hm AP-1). hm AP-1 DNA binding activities were sequence specific with respect to AP-1 and absent from freshly isolated HSCs. Supershift EMSA and Western blot studies identified JunD, Fra2, and FosB as potential components of theHM AP-1. Mutations of the AP-1 site of the TIMP-1 promoter that prevented formation of hm AP-1 caused a 70% loss of activity in transfected activated HSCs. Taken together the data indicate that sustained upregulation of TIMP-1 gene expression may be at least partially controlled by a novel AP-1 dependent regulation of TIMP-1 promoter activity.