Deranged blood coagulation equilibrium as a factor of massive liver necrosis following endotoxin administration in partially hepatectomized rats



Activated Kupffer cells provoke massive liver necrosis after endotoxin stimulation through microcirculatory disturbance caused by sinusoidal fibrin deposition in rats undergoing 70% hepatectomy. In these rats, serum activities of purine nucleoside phosphorylase (PNP) and alanine transaminase (ALT) were increased at 1 and 5 hours, respectively, following endotoxin administration. When 70% resected liver was perfused with Dulbecco's modified Eagle medium (DMEM) containing heat-inactivated fetal calf serum, the increase in both enzyme activities was not affected by addition of endotoxin during perfusion, suggesting that activated Kupffer cells injured neither sinusoidal endothelial cells nor hepatocytes. The activity of tissue factor, an initiator of blood coagulation cascade, was much higher in Kupffer cells isolated from partially hepatectomized rats than in those from normal rats. In contrast, mRNA expressions of tissue factor pathway inhibitor (TFPI) as well as thrombomodulin were almost undetectable in normal and partially resected livers. When recombinant human TFPI was injected intravenously in 70% hepatectomized rats, TFPI was markedly stained on the surfaces of sinusoidal endothelial cells and microvilli of hepatocytes on immunohistochemistry. In these rats, endotoxin-induced liver injury was significantly attenuated compared with rats given no TFPI. Similar attenuation was also found in rats receiving recombinant human thrombomodulin. These results suggest that fibrin deposition developing in 70% hepatectomized rats after endotoxin administration may be caused by deranged blood coagulation in the hepatic sinusoids through increasing tissue factor activity in Kupffer cells and minimal TFPI and thrombomodulin in endothelial cells. The destruction of sinusoidal endothelial cells as well as hepatocytes may occur as a result of microcirculatory disturbance caused by such sinusoidal fibrin deposition.