Activation of rat hepatic stellate cells leads to loss of glutathion S-transferases and their enzymatic activity against products of oxidative stress

Authors


Abstract

Oxidative stress, mediated partly by lipid peroxidation products, may lead to increased collagen synthesis by hepatic stellate cells (HSC). Stellate cells are protected from oxidative stress by enzymes of detoxication such as the glutathioneS-transferases (GSTs), which form glutathione conjugates with lipid peroxidation products (e.g., 4-hydroxy-2-nonenal [HNE]). To better understand the role of GSTs in stellate cell biology, we examined the expression and enzymatic activity of GSTs in normal and activated (both culture- and in vivo–activated) stellate cells. Normal stellate cells contained numerous isoforms of GST including those that detoxify HNE. High levels of enzymatic activity toward 1-chloro-2,4-dinitrobenzene (CDNB) and HNE were present in normal stellate cells and were similar to levels present in whole liver. Following activation by growth in culture, the expression of several GSTs (rGSTA1/A2, A3, and M1) was lost. Also, enzymatic activities toward CDNB and HNE fell ∼90%. However, expression of rGSTP1 was maintained. A similar loss of rGSTA1/A2, A3, and M1 with persistent expression of rGSTP1 was present after activation in vivo. Furthermore, we identified 2 subpopulations of activated stellate cells with different GST phenotypes from injured livers. In summary, activated stellate cells lose most forms of GST and associated enzymatic activities that are present in normal stellate cells. The findings raise the possibility that activated stellate cells have less ability to detoxify lipid peroxidation products and may be susceptible to oxidative stress. Additionally, we propose that the phenotypic change in GSTs is a sensitive marker of stellate cell activation.

Ancillary