Matrix metalloproteinase-2 activation in human hepatic fibrosis regulation by cell-matrix interactions



Matrix metalloproteinase-2 (MMP-2) is involved in extracellular matrix remodeling. It is secreted as a proenzyme and activated by membrane type-MMPs (MT-MMP), such as MT1-MMP. In liver fibrosis, MMP-2 is highly expressed in myofibroblasts and may have a profibrogenic role. The mechanisms of its activation in the liver are still unclear. The aim of this work was to show that pro-MMP-2 is efficiently activated in human fibrotic liver and to investigate the role of cell-matrix interactions in this process. Liver specimens obtained from patients with active cirrhosis were compared to normal liver specimens. Human hepatic myofibroblasts were cultured either on plastic, fibronectin, laminin, or on collagen I gels. MMP-2 activity was visualized by gelatin zymography. MMP-2 active form (59 kd) was detected in active cirrhosis but not in normal liver. Myofibroblasts cultured on plastic, fibronectin, or laminin predominantly expressed inactive pro-MMP-2 (66 kd). In contrast, myofibroblasts cultured on collagen I markedly activated the enzyme. Similar results were obtained using membrane fractions from cells previously cultured on collagen or plastic. Activation was inhibited by the tissue inhibitor of metalloproteinases-2 but not by tissue inhibitor of metalloproteinases-1, implicating a MT-MMP-mediated process. Culture on collagen I up-regulated MT1-MMP protein detected by Western blotting, but decreased MT1-MMP mRNA. This study shows that MMP-2 is activated in fibrotic liver. It suggests that interactions between collagen I and myofibroblasts promote this process through a post-translational increase of MT1-MMP expression in these cells.