SEARCH

SEARCH BY CITATION

Abstract

Development of new therapies for human hepatitis B virus infection (HBV) would be greatly facilitated by the availability of a suitable small-animal model for HBV virus production in vivo. To develop a murine model for HBV production, we established an immortalized, cloned liver cell line by transferring the Simian Virus 40 Large T-Antigen into primary human hepatocytes. These cells were stably transfected with a full-length HBV genome to generate a clone that expresses HBV genes and replicates HBV. The HBV–producing cells were transplanted into the livers of mice with combined immunodeficiency (Rag-2 deficient) by intrasplenic injection. Survival of the engrafted human hepatocytes was shown in several ways: fluorescent in situ hybridization (FISH) with a human-chromosome–specific DNA probe (human alpha satellite), dot-blot hybridization of the genomic DNA extracted from liver biopsy specimens with a human-specific Alu repetitive DNA probe, Blur-8, as well as with an HBV DNA probe, and secretion of human proteins into plasma. Histological examination of mouse liver up to 8 months following human cell transplant shows completely normal architecture. Determination of plasma HBV DNA levels indicated that engrafted cells secreted 3×107 to 3×108 virions per mL into the blood, and HBsAg was detected in plasma. This new murine model of HBV viremia should be useful for in vivo HBV studies.