• wheel running;
  • amygdala;
  • brain-derived neurotrophic factor;
  • extinction;
  • generalization


Voluntary physical activity induces molecular changes in the hippocampus consistent with improved hippocampal function, but few studies have explored the effects of wheel running on specific hippocampal-dependent learning and memory processes. The current studies investigated the impact of voluntary wheel running on learning and memory for context and extinction using contextual fear conditioning which is known to be dependent on the hippocampus. When conditioning occurred prior to the start of 6 weeks of wheel running, wheel running had no effect on memory for context or extinction (assessed with freezing). In contrast, when wheel running occurred for 6 weeks prior to conditioning, physical activity improved contextual memory during a retention test 24 h later, but did not affect extinction learning or memory. Wheel running had no effect on freezing immediately after foot shock presentation during conditioning, suggesting that physical activity does not affect the acquisition of the context—shock association or alter the expression of freezing, per se. Instead, it is argued that physical activity improves the consolidation of contextual memories in the hippocampus. Consistent with improved hippocampus-dependent context learning and memory, 6 weeks of wheel running also improved context discrimination and reduced the context pre-exposure time required to form a strong contextual memory. The effect of wheel running on brain-derived neurotrophic factor (BDNF) messenger ribonucleic acid (mRNA) in hippocampal and amygdala subregions was also investigated. Wheel running increased BDNF mRNA in the dentate gyrus, CA1, and the basolateral amygdala. Results are consistent with improved hippocampal function following physical activity. © 2008 Wiley-Liss, Inc.