SEARCH

SEARCH BY CITATION

REFERENCES

  • Aldenhoff JB, Gruol DL, Rivier J, Vale W, Siggins GR. 1983. Corticotropin releasing factor decreases postburst hyperpolarizations and excites hippocampal neurons. Science 221:875877.
  • Alger BE, Nicoll RA. 1980. Epileptiform burst afterhyperolarization: Calcium-dependent potassium potential in hippocampal CA1 pyramidal cells. Science 210:11221124.
  • Blanton MG, Lo Turco JJ, Kriegstein AR. 1989. Whole cell recording from neurons in slices of reptilian and mammalian cerebral cortex. J Neurosci Methods 30:203210.
  • Borde M, Bonansco C, Buno W. 1999. The activity-dependent potentiation of the slow Ca2+-activated K+ current regulates synaptic efficacy in rat CA1 pyramidal neurons. Pflugers Arch 437:261266.
  • Botelho LH, Rothermel JD, Coombs RV, Jastorff B. 1988. cAMP analog antagonists of cAMP action. Methods Enzymol 159:159172.
  • Cauvin A, Robberecht P, De Neef P, Gourlet P, Vandermeers A, Vandermeers-Piret MC, Christophe J. 1991. Properties and distribution of receptors for pituitary adenylate cyclase activating peptide (PACAP) in rat brain and spinal cord. Regul Pept 35:161173.
  • Delghandi MP, Johannessen M, Moens U. 2005. The cAMP signalling pathway activates CREB through PKA, p38 and MSK1 in NIH 3T3 cells. Cell Signal 17:13431351.
  • Di Mauro M, Cavallaro S, Ciranna L. 2003. Pituitary adenylate cyclase-activating polypeptide modifies the electrical activity of CA1 hippocampal neurons in the rat. Neurosci Lett 337:97100.
  • Dickinson T, Fleetwood-Walker SM, Mitchell R, Lutz EM. 1997. Evidence for roles of vasoactive intestinal polypeptide (VIP) and pituitary adenylate cyclase activating polypeptide (PACAP) receptors in modulating the responses of rat dorsal horn neurons to sensory inputs. Neuropeptides 31:175185.
  • Disterhoft JF, Wu WW, Ohno M. 2004. Biophysical alterations of hippocampal pyramidal neurons in learning, ageing and Alzheimer's disease. Ageing Res Rev 3:383406.
  • Dumaz N, Marais R. 2005. Integrating signals between cAMP and the RAS/RAF/MEK/ERK signalling pathways. FEBS J 272:34913504.
  • Eyers PA, Craxton M, Morrice N, Cohen P, Goedert M. 1998. Conversion of SB 203580-insensitive MAP kinase family members to drug-sensitive forms by a single amino-acid substitution. Chem Biol 5:321328.
  • Favata MF, Horiuchi KY, Manos EJ, Daulerio AJ, Stradley DA, Feeser WS, Van Dyk DE, Pitts WJ, Earl RA, Hobbs F, Copeland RA, Magolda RL, Scherle PA, Trzaskos JM. 1998. Identification of a novel inhibitor of mitogen-activated protein kinase kinase. J Biol Chem 273:1862318632.
  • Feany MB, Quinn WG. 1995. A neuropeptide gene defined by the Drosophila memory mutant amnesiac. Science 268:869873.
  • Fernandez de Sevilla D, Fuenzalida M, Porto Pazos AB, Buno W. 2007. Selective shunting of the NMDA EPSP component by the slow afterhyperpolarization in rat CA1 pyramidal neurons. J Neurophysiol 97:32423255.
  • Haas HL, Gahwiler BH. 1992. Vasoactive intestinal polypeptide modulates neuronal excitability in hippocampal slices of the rat. Neuroscience 47:273277.
  • Hannibal J. 2002. Pituitary adenylate cyclase-activating peptide in the rat central nervous system: An immunohistochemical and in situ hybridization study. J Comp Neurol 453:389417.
  • Harmar AJ. 2001. Family-B G-protein-coupled receptors. Genome Biol 2:reviews3013.1–3013.10.
  • Harmar AJ, Fahrenkrug J, Gozes I, Laburthe M, May V, Pisegna JR, Vaudry D, Vaudry H, Waschek JA, Said SI. 2012. Pharmacology and functions of receptors for vasoactive intestinal peptide and pituitary adenylate cyclase-activating polypeptide. Br J Pharmacol 166:417.
  • Hashimoto H, Ishihara T, Shigemoto R, Mori K, Nagata S. 1993. Molecular cloning and tissue distribution of a receptor for pituitary adenylate cyclase-activating polypeptide. Neuron 11:333342.
  • Hashimoto H, Nogi H, Mori K, Ohishi H, Shigemoto R, Yamamoto K, Matsuda T, Mizuno N, Nagata S, Baba A. 1996. Distribution of the mRNA for a pituitary adenylate cyclase-activating polypeptide receptor in the rat brain: An in situ hybridization study. J Comp Neurol 371:567577.
  • Haug T, Storm JF. 2000. Protein kinase A mediates the modulation of the slow Ca2+-dependent K+ current, IsAHP, by the neuropeptides CRF, VIP, and CGRP in hippocampal pyramidal neurons. J Neurophysiol 83:20712079.
  • Herbert JM, Augereau JM, Gleye J, Maffrand JP. 1990. Chelerythrine is a potent and specific inhibitor of protein kinase C. Biochem Biophys Res Commun 172:993999.
  • Hotson JR, Prince DA. 1980. A calcium-activated hyperpolarization follows repetitive firing in hippocampal neurons. J Neurophysiol 43:409419.
  • Hu E, Demmou L, Cauli B, Gallopin T, Geoffroy H, Harris-Warrick RM, Paupardin-Tritsch D, Lambolez B, Vincent P, Hepp R. 2011. VIP, CRF, and PACAP act at distinct receptors to elicit different cAMP/PKA dynamics in the neocortex. Cereb Cortex 21:708718.
  • Ishihara T, Shigemoto R, Mori K, Takahashi K, Nagata S. 1992. Functional expression and tissue distribution of a novel receptor for vasoactive intestinal polypeptide. Neuron 8:811819.
  • Jaworski DM, Proctor MD. 2000. Developmental regulation of pituitary adenylate cyclase-activating polypeptide and PAC1 receptor mRNA expression in the rat central nervous system. Brain Res Dev Brain Res 120:2739.
  • Joo KM, Chung YH, Kim MK, Nam RH, Lee BL, Lee KH, Cha CI. 2004. Distribution of vasoactive intestinal peptide and pituitary adenylate cyclase-activating polypeptide receptors (VPAC1, VPAC2, and PAC1 receptor) in the rat brain. J Comp Neurol 476:388413.
  • Kondo T, Tominaga T, Ichikawa M, Iijima T. 1997. Differential alteration of hippocampal synaptic strength induced by pituitary adenylate cyclase activating polypeptide-38 (PACAP-38). Neurosci Lett 221:189192.
  • Koves K, Arimura A, Gorcs TG, Somogyvari-Vigh A. 1991. Comparative distribution of immunoreactive pituitary adenylate cyclase activating polypeptide and vasoactive intestinal polypeptide in rat forebrain. Neuroendocrinology 54:159169.
  • Lancaster B, Adams PR. 1986. Calcium-dependent current generating the afterhyperpolarization of hippocampal neurons. J Neurophysiol 55:12681282.
  • Lancaster B, Hu H, Ramakers GM, Storm JF. 2001. Interaction between synaptic excitation and slow afterhyperpolarization current in rat hippocampal pyramidal cells. J Physiol 536:809823.
  • Lancaster B, Nicoll RA. 1987. Properties of two calcium-activated hyperpolarizations in rat hippocampal neurones. J Physiol 389:187203.
  • Lerner EA, Ribeiro JM, Nelson RJ, Lerner MR. 1991. Isolation of maxadilan, a potent vasodilatory peptide from the salivary glands of the sand fly Lutzomyia longipalpis. J Biol Chem 266:1123411236.
  • Lutz EM, Sheward WJ, West KM, Morrow JA, Fink G, Harmar AJ. 1993. The VIP2 receptor: Molecular characterisation of a cDNA encoding a novel receptor for vasoactive intestinal peptide. FEBS Lett 334:38.
  • Madison DV, Nicoll RA. 1982. Noradrenaline blocks accommodation of pyramidal cell discharge in the hippocampus. Nature 299:636638.
  • Madison DV, Nicoll RA. 1984. Control of the repetitive discharge of rat CA 1 pyramidal neurones in vitro. J Physiol 354:319331.
  • Malenka RC, Madison DV, Andrade R, Nicoll RA. 1986. Phorbol esters mimic some cholinergic actions in hippocampal pyramidal neurons. J Neurosci 6:475480.
  • Masuo Y, Ohtaki T, Masuda Y, Tsuda M, Fujino M. 1992. Binding sites for pituitary adenylate cyclase activating polypeptide (PACAP): Comparison with vasoactive intestinal polypeptide (VIP) binding site localization in rat brain sections. Brain Res 575:113123.
  • Matsuyama S, Matsumoto A, Hashimoto H, Shintani N, Baba A. 2003. Impaired long-term potentiation in vivo in the dentate gyrus of pituitary adenylate cyclase-activating polypeptide (PACAP) or PACAP type 1 receptor-mutant mice. Neuroreport 14:20952098.
  • Miyata A, Arimura A, Dahl RR, Minamino N, Uehara A, Jiang L, Culler MD, Coy DH. 1989. Isolation of a novel 38 residue-hypothalamic polypeptide which stimulates adenylate cyclase in pituitary cells. Biochem Biophys Res Commun 164:567574.
  • Miyata A, Jiang L, Dahl RD, Kitada C, Kubo K, Fujino M, Minamino N, Arimura A. 1990. Isolation of a neuropeptide corresponding to the N-terminal 27 residues of the pituitary adenylate cyclase activating polypeptide with 38 residues (PACAP38). Biochem Biophys Res Commun 170:643648.
  • Monaghan TK, Mackenzie CJ, Plevin R, Lutz EM. 2008. PACAP-38 induces neuronal differentiation of human SH-SY5Y neuroblastoma cells via cAMP-mediated activation of ERK and p38 MAP kinases. J Neurochem 104:7488.
  • Moro O, Lerner EA. 1997. Maxadilan, the vasodilator from sand flies, is a specific pituitary adenylate cyclase activating peptide type I receptor agonist. J Biol Chem 272:966970.
  • Moro O, Tajima M, Lerner EA. 1996. Receptors for the vasodilator maxadilan are expressed on selected neural crest and smooth muscle-derived cells. Insect Biochem Mol Biol 26:10191025.
  • Moro O, Wakita K, Ohnuma M, Denda S, Lerner EA, Tajima M. 1999. Functional characterization of structural alterations in the sequence of the vasodilatory peptide maxadilan yields a pituitary adenylate cyclase-activating peptide type 1 receptor-specific antagonist. J Biol Chem 274:2310323110.
  • Nishizuka Y. 1992. Intracellular signaling by hydrolysis of phospholipids and activation of protein kinase C. Science 258:607614.
  • Otto C, Kovalchuk Y, Wolfer DP, Gass P, Martin M, Zuschratter W, Grone HJ, Kellendonk C, Tronche F, Maldonado R, Lipp H-P, Konnerth A, Schütz G. 2001. Impairment of mossy fiber long-term potentiation and associative learning in pituitary adenylate cyclase activating polypeptide type I receptor-deficient mice. J Neurosci 21:55205527.
  • Pedarzani P, Storm JF. 1993. PKA mediates the effects of monoamine transmitters on the K+ current underlying the slow spike frequency adaptation in hippocampal neurons. Neuron 11:10231035.
  • Pedarzani P, Storm JF. 1995. Dopamine modulates the slow Ca2+-activated K+ current IAHP via cyclic AMP-dependent protein kinase in hippocampal neurons. J Neurophysiol 74:27492753.
  • Piggins HD, Stamp JA, Burns J, Rusak B, Semba K. 1996. Distribution of pituitary adenylate cyclase activating polypeptide (PACAP) immunoreactivity in the hypothalamus and extended amygdala of the rat. J Comp Neurol 376:278294.
  • Quinn WG, Sziber PP, Booker R. 1979. The Drosophila memory mutant amnesiac. Nature 277:212214.
  • Rehmann H, Schwede F, Doskeland SO, Wittinghofer A, Bos JL. 2003. Ligand-mediated activation of the cAMP-responsive guanine nucleotide exchange factor Epac. J Biol Chem 278:3854838556.
  • Roberto M, Scuri R, Brunelli M. 2001. Differential effects of PACAP-38 on synaptic responses in rat hippocampal CA1 region. Learn Mem 8:265271.
  • Sacchetti B, Lorenzini CA, Baldi E, Bucherelli C, Roberto M, Tassoni G, Brunelli M. 2001. Pituitary adenylate cyclase-activating polypeptide hormone (PACAP) at very low dosages improves memory in the rat. Neurobiol Learn Mem 76:16.
  • Sah P, Bekkers JM. 1996. Apical dendritic location of slow afterhyperpolarization current in hippocampal pyramidal neurons: Implications for the integration of long-term potentiation. J Neurosci 16:45374542.
  • Sah P, Faber ES. 2002. Channels underlying neuronal calcium-activated potassium currents. Prog Neurobiol 66:345353.
  • Sakai Y, Hashimoto H, Shintani N, Tomimoto S, Tanaka K, Ichibori A, Hirose M, Baba A. 2001. Involvement of p38 MAP kinase pathway in the synergistic activation of PACAP mRNA expression by NGF and PACAP in PC12h cells. Biochem Biophys Res Commun 285:656661.
  • Sauvage M, Brabet P, Holsboer F, Bockaert J, Steckler T. 2000. Mild deficits in mice lacking pituitary adenylate cyclase-activating polypeptide receptor type 1 (PAC1) performing on memory tasks. Brain Res Mol Brain Res 84:7989.
  • Schwartzkroin PA, Stafstrom CE. 1980. Effects of EGTA on the calcium-activated afterhyperpolarization in hippocampal CA3 pyramidal cells. Science 210:11251126.
  • Shi GX, Rehmann H, Andres DA. 2006. A novel cyclic AMP-dependent Epac-Rit signaling pathway contributes to PACAP38-mediated neuronal differentiation. Mol Cell Biol 26:91369147.
  • Shioda S, Shuto Y, Somogyvari-Vigh A, Legradi G, Onda H, Coy DH, Nakajo S, Arimura A. 1997. Localization and gene expression of the receptor for pituitary adenylate cyclase-activating polypeptide in the rat brain. Neurosci Res 28:345354.
  • Skoglosa Y, Takei N, Lindholm D. 1999. Distribution of pituitary adenylate cyclase activating polypeptide mRNA in the developing rat brain. Brain Res Mol Brain Res 65:113.
  • Spengler D, Waeber C, Pantaloni C, Holsboer F, Bockaert J, Seeburg PH, Journot L. 1993. Differential signal transduction by five splice variants of the PACAP receptor. Nature 365:170175.
  • Ster J, de Bock F, Bertaso F, Abitbol K, Daniel H, Bockaert J, Fagni L. 2009. Epac mediates PACAP-dependent long-term depression in the hippocampus. J Physiol 587:101113.
  • Ster J, De Bock F, Guerineau NC, Janossy A, Barrere-Lemaire S, Bos JL, Bockaert J, Fagni L. 2007. Exchange protein activated by cAMP (Epac) mediates cAMP activation of p38 MAPK and modulation of Ca2+-dependent K+ channels in cerebellar neurons. Proc Natl Acad Sci USA 104:25192524.
  • Stetler RA, Gao Y, Zukin RS, Vosler PS, Zhang L, Zhang F, Cao G, Bennett MV, Chen J. 2010. Apurinic/apyrimidinic endonuclease APE1 is required for PACAP-induced neuroprotection against global cerebral ischemia. Proc Natl Acad Sci USA 107:32043209.
  • Stocker M, Hirzel K, D'Hoedt D, Pedarzani P. 2004. Matching molecules to function: Neuronal Ca2+-activated K+ channels and afterhyperpolarizations. Toxicon 43:933949.
  • Toullec D, Pianetti P, Coste H, Bellevergue P, Grand-Perret T, Ajakane M, Baudet V, Boissin P, Boursier E, Loriolle F, Duhamel L, Charon D, Kirilovsky J. 1991. The bisindolylmaleimide GF 109203X is a potent and selective inhibitor of protein kinase C. J Biol Chem 266:1577115781.
  • Vaudry D, Falluel-Morel A, Bourgault S, Basille M, Burel D, Wurtz O, Fournier A, Chow BK, Hashimoto H, Galas L, Vaudry H. 2009. Pituitary adenylate cyclase-activating polypeptide and its receptors: 20 years after the discovery. Pharmacol Rev 61:283357.
  • Villalba M, Bockaert J, Journot L. 1997. Pituitary adenylate cyclase-activating polypeptide (PACAP-38) protects cerebellar granule neurons from apoptosis by activating the mitogen-activated protein kinase (MAP kinase) pathway. J Neurosci 17:8390.
  • Wu WW, Chan CS, Disterhoft JF. 2004. Slow afterhyperpolarization governs the development of NMDA receptor-dependent afterdepolarization in CA1 pyramidal neurons during synaptic stimulation. J Neurophysiol 92:23462356.
  • Young SR, Bianchi R, Wong RK. 2008. Signaling mechanisms underlying group I mGluR-induced persistent AHP suppression in CA3 hippocampal neurons. J Neurophysiol 99:11051118.
  • Zhang W, Linden DJ. 2003. The other side of the engram: Experience-driven changes in neuronal intrinsic excitability. Nat Rev Neurosci 4:885900.
  • Zheng M, Zhang SJ, Zhu WZ, Ziman B, Kobilka BK, Xiao RP. 2000. beta 2-adrenergic receptor-induced p38 MAPK activation is mediated by protein kinase A rather than by Gi or gbeta gamma in adult mouse cardiomyocytes. J Biol Chem 275:4063540640.
  • Zhong Y. 1995. Mediation of PACAP-like neuropeptide transmission by coactivation of Ras/Raf and cAMP signal transduction pathways in Drosophila. Nature 375:588592.