SEARCH

SEARCH BY CITATION

Keywords:

  • acute myeloid leukaemia;
  • hypomethylating agents;
  • chemotherapy;
  • older patients

Abstract

Acute myeloid leukaemia (AML) is the second more frequent hematologic malignancy in developed countries and primarily affects older adults with a median age at diagnosis of 69 years. Given the progressive ageing of the general population, the incidence of the disease in elderly people is expected to further increase in the years to come. Along with cytogenetics at diagnosis, age represents the most relevant prognostic factor in AML, in that the outcome steadily declines with increasing age. Reasons for poor prognosis include more frequent unfavourable karyotype and other adverse biologic characteristics, such as high rates of expression of genes drug resistance related and high prevalence of secondary AML. Noticeably, as compared with young adults, poorer results in elderly patients have been reported within any cytogenetic and molecular prognostic subgroup, because of frequent comorbid diseases, which render many patients ineligible to intensive chemotherapy. Therefore, predictive models have been developed with the aim of achieving best therapeutic results avoiding unnecessary toxicity. Following conventional induction therapy, older AML patients have complete remission rates in the range of 45–65%, and fewer than 10% of them survive for a minimum of 5 years. On the other hand, hypomethylating agents, such as azacytidine and decitabine offer the possibility of long-term disease control without necessarily achieving complete remission and can represent a reasonable alternative to intensive chemotherapy. Either intensive chemotherapy or hypomethylating agents have lights and shadows, and the therapeutic selection is often influenced by physician's and patient's attitude rather than definite criteria. Research is progress in order to assess predictive biologic factors, which would help clinicians in the selection of patients who can take actual benefit from different therapeutic options. Copyright © 2013 John Wiley & Sons, Ltd.