SEARCH

SEARCH BY CITATION

Keywords:

  • neurofibromatosis type-1;
  • benign and malignant tumors;
  • loss-of-heterozygosity;
  • copy number alterations;
  • Rho–GTPase pathway genes;
  • cell adhesion;
  • migration;
  • invasion;
  • wound healing;
  • metastasis

Abstract

Neurofibromatosis type-1 (NF1) is associated with the growth of benign and malignant tumors. Approximately 15% of NF1 patients develop malignant peripheral nerve sheath tumors (MPNSTs), underlining the need to identify specific diagnostic/prognostic biomarkers associated with MPNST development. The Affymetrix Genome-Wide Human single-nucleotide polymorphism (SNP) Array 6.0 was used to perform SNP genotyping and copy number alteration (CNA), loss-of-heterozygosity (LOH), and copy number neutral–LOH (CNN–LOH) analyses of DNA isolated from 15 MPNSTs, five benign plexiform neurofibromas (PNFs), and patient-matched lymphocyte DNAs. MPNSTs exhibited high-level CNN-LOH, with recurrent changes occurring in MPNSTs but not PNFs. CNN–LOH was evident in MPNSTs but occurred less frequently than genomic deletions. CNAs involving the ITGB8, PDGFA, Ras-related C3 botulinum toxin substrate 1 (RAC1) (7p21-p22), PDGFRL (8p22-p21.3), and matrix metallopeptidase 12 (MMP12) (11q22.3) genes were specific to MPNSTs. Pathway analysis revealed the MPNST-specific amplification of seven Rho–GTPase pathway genes and several cytoskeletal remodeling/cell adhesion genes. In knockdown experiments employing short-hairpin RAC1, ROCK2, PTK2, and LIMK1 RNAs to transfect both control and MPNST-derived cell lines, cell adhesion was significantly increased in the MPNST cell lines, whereas wound healing, cell migration, and invasiveness were reduced, consistent with a role for these Rho–GTPase pathway genes in MPNST development and metastasis. These results suggest new targets for therapeutic intervention in relation to MPNSTs. Hum Mutat 33:763–776, 2012. © 2012 Wiley Periodicals, Inc.