• primary hyperoxaluria type 2;
  • glyoxylate reductase;
  • hydroxypyruvate reductase, mutations, GRHPR, Oxaluria


Primary hyperoxaluria type 2, an inherited autosomal recessive disorder of endogenous oxalate overproduction, is caused by mutations in the GRHPR gene encoding the glyoxylate/hydroxypyruvate reductase enzyme. The GRHPR genes from nineteen unrelated patients with PH2 were analysed for mutations using a combination of PCR-SSCP and sequence analysis of genomic and cDNA. Eleven mutations were identified, seven of which are novel. The mutations included five point mutations: c.84-2A>G, c.295C>T (R99X), c.494G>A (G165D), and c.904C>T (R302C) as well as six minor deletions: c.103delG, c.375delG, c.403_405+2 delAAGT, c.540delT, c.608_609delCT and a more complex mutation in intron 1: c.84-13_c.84-12del ; c.84-8_c.84-5del. Aberrant transcripts were demonstrated in hepatic mRNA as a result of the c.403_405+2 delAAGT and c.84-2A>G mutations. In addition, a splice variant lacking 28 bp of exon 1 was expressed in a number of tissues but is of unknown function. Two polymorphisms, c.579A>G in exon 6 and a (CT)n microsatellite in intron 8 were identified. Expression studies showed that the G165D and R302C mutants had glyoxylate reductase activity 1.5 and 5.6% respectively of the wild type protein. Both mutant proteins were unstable on purification. Although there is wide expression of the GRHPR mRNA demonstrated by northern blot analysis, our study shows that GRHPR protein distribution is predominantly hepatic and concludes that PH2, like the related type 1 disease, is primarily a disorder affecting hepatic glyoxylate metabolism. © 2003 Wiley-Liss, Inc. © 2003 Wiley-Liss, Inc.