Century-long records reveal slight, ecoregion-localized changes in Athabasca River flows



Reports of abruptly declining flows of Canada's Athabasca River have prompted concern because this large, free-flowing river could be representative for northern North America, provides water for the massive Athabasca oil-sands projects and flows to the extensive and biodiverse Peace–Athabasca, Slave and Mackenzie River deltas. To investigate historic hydrology along the river and its major tributaries, we expanded the time series with interpolations for short data gaps; calculations of annual discharges from early, summer-only records; and by splicing records across sequential hydrometric gauges. These produced composite, century-long records (1913–2011) and trend detection with linear Pearson correlation provided similar outcomes to nonparametric Kendall τ-b tests. These revealed that the mountain and foothills reaches displayed slight increases in winter discharges versus larger declines in summer discharges and consequently declining annual flows (~0.16% per year at Hinton; p < 0.01). Conversely, with contrasting boreal contributions, the Athabasca River at Athabasca displayed no overall trend in monthly or annual flows, but there was correspondence with the Pacific Decadal Oscillation that contributed to a temporary flow decline from 1970 to 2000. These findings from century-long records contrast with interpretations from numerous shorter-term studies and emphasize the need for sufficient time series for hydrologic trend analyses. For Northern Hemisphere rivers, the study interval should be at least 80 years to span two Pacific Decadal Oscillation cycles and dampen the influence from phase transitions. Most prior trend analyses considered only a few decades, and this weakens interpretations of the hydrologic consequences of climate change. Copyright © 2014 John Wiley & Sons, Ltd.