SEARCH

SEARCH BY CITATION

Keywords:

  • streamflow regime;
  • vegetation change;
  • streamflow response;
  • precipitation trend;
  • potential evaporation trend;
  • paired catchment studies

Abstract

Vegetation changes can significantly affect catchment water balance. It is important to evaluate the effects of vegetation cover change on streamflow as changes in streamflow relate to water security. This study focuses on the use of statistical methods to determine responses in streamflow at seven paired catchments in Australia, New Zealand, and South Africa to vegetation change. The non-parametric Mann–Kendall test and Pettitt's test were used to identify trends and change points in the annual streamflow records. Statistically significant trends in annual streamflow were detected for most of the treated catchments. It took between 3 and 10 years for a change in vegetation cover to result in significant change in annual streamflow. Presence of the change points in streamflow was associated with changes in the mean, variance, and distribution of annual streamflow. The streamflow in the deforestation catchments increased after the change points, whereas reduction in streamflow was observed in the afforestation catchments. The streamflow response is mainly affected by the climate and underlying vegetation change. Daily flow duration curves (FDCs) for the whole period and pre-change and post-change point periods also were analysed to investigate the changes in flow regime. Three types of vegetation change effects on the flow regime have been identified. The relative reductions in most percentile flows are constant in the afforestation catchments. The comparison of trend, change point, and FDC in the annual streamflow from the paired experiments reflects the important role of the vegetation change. Copyright © 2011 John Wiley & Sons, Ltd.