Get access

Improving the forecasts of extreme streamflow by support vector regression with the data extracted by self-organizing map



During typhoons or storms, accurate forecasts of hourly streamflow are necessary for flood warning and mitigation. However, hourly streamflow is difficult to forecast because of the complex physical process and the high variability in time. Furthermore, under the global warming scenario, events with extreme streamflow may occur that leads to more difficulties in forecasting streamflows. Hence, to obtain more accurate hourly streamflow forecasts, an improved streamflow forecasting model is proposed in this paper. The computational kernel of the proposed model is developed on the basis of support vector machine (SVM). Additionally, self-organizing map (SOM) is used to analyse observed data to extract data with specific properties, which are capable of providing valuable information for streamflow forecasting. After reprocessing, these extracted data and the observed data are used to construct the SVM-based model. An application is conducted to clearly demonstrate the advantage of the proposed model. The comparison between the proposed model and the conventional SVM model, which is constructed without SOM, is performed. The results indicate that the proposed model is better performed than the conventional SVM model. Moreover, as regards the extreme events, the result shows that the proposed model reduces the forecasting error, especially the error of peak streamflow. It is confirmed that because of the use of data extracted by SOM, the improved forecasting performance is obtained. The proposed model, which can produce accurate forecasts, is expected to be useful to support flood warning systems. Copyright © 2012 John Wiley & Sons, Ltd.