A modelling approach to assessing variations of total suspended solids (tss) mass fluxes during storm events



Connections between the catchment hydrology and accumulation, washoff and transport of pollutants in wet weather greatly affect the management of urban drainage and its wet-weather effluents. In recent years, the concept of the first flush has gained on prominence and was further developed for analyzing the interaction between the hydrology and transport of runoff pollutants. One of the most important definitions of the first flush can be derived from the analysis of the m(v) curves (i.e. the curves in which the normalized cumulative pollutant mass is plotted vs the normalized cumulative runoff volume). Indeed the m(v) curves, indicating the distribution of pollutant mass versus volume in wet-weather flow (WWF) discharges, are commonly used for comparing pollutant discharges for different rainfall events and catchments. In this study, the m(v) curves were used to define the concepts of flow-limited and mass-limited WWF events. These two different behaviours have been analysed for rainfall/runoff events observed in the urbanized part of the Liguori catchment in Cosenza (Italy). In order to advance the understanding of the intra-event variability of m(v) curves, the mathematical rainfall/runoff model Storm Water Management Model of the US Environmental Protection Agency (SWMM) was calibrated for eight observed rainfall/runoff events and the differences between observed and simulated m(v) curves were analysed. The results showed a good correlation between the observed and simulated m(v) curves, and this finding offers further benefits in SWMM model calibration. Copyright © 2013 John Wiley & Sons, Ltd.