SEARCH

SEARCH BY CITATION

Keywords:

  • backwater;
  • dam;
  • flash flood;
  • reservoir;
  • urban area

Abstract

During the last few years, the north-western part of Romania has been affected by catastrophic floods with most of the watercourses reaching their highest recorded discharges. This study reports the generation of a numerical terrain model and the simulation of a backwater phenomenon at elevation steps according to the volume of water accumulated at the confluence of the Buhai Brook with the Jijia River. The hydrological data are complemented by rainfall data and the careful recording of the flood behaviour during the entire period of its development. The main aim of the study is to identify the causes of the backwater phenomenon and to highlight the material damage inflicted on the town of Dorohoi. At the same time, the study uses cartographic model that was developed to establish which areas are at risk of flooding at various levels of probability. The catastrophic flood began on the Buhai Brook, a slow-flowing stream that drains the areas to the west of the town of Dorohoi and discharged into the upstream sector of the Jijia confluence. The flood caused two types of backwater waves: one behind the bridges and the houses built on the floodplain and a second that followed the course of the main stem (Jijia) upstream from the confluence, flooding the Ezer Lake, which was created specifically to attenuate such floods. The spillway backwater phenomenon was inter-basin as it did not occur in a single hydrographic basin. The causes of the catastrophic flash flood and of the inter-basin backwater overflow are natural but also reflect anthropogenic influence. After the lake filled, the discharge into the Jijia was controlled and the flooding downstream was thus greatly diminished. Though fortuitous, the backwater flooding was important in mitigating the impact of the flood wave from the Jijia River. Copyright © 2013 John Wiley & Sons, Ltd.