SEARCH

SEARCH BY CITATION

Keywords:

  • Sustainable water management;
  • Life cycle assessment;
  • Life cycle costing;
  • Streamlined sustainability assessment tool;
  • Multicriteria analysis

Abstract

Water supply is a key consideration in sustainable urban planning. Ideally, detailed quantitative sustainability assessments are undertaken during the planning stage to inform the decision-making process. In reality, however, the significant time and cost associated with undertaking such detailed environmental and economic assessments is often cited as a barrier to wider implementation of these key decision support tools, particularly for decisions made at the local or regional government level. In an attempt to overcome this barrier of complexity, 4 water service providers in Melbourne, Australia, funded the development of a publicly available streamlined Environmental Sustainability Assessment Tool, which is aimed at a wide range of decision makers to assist them in broadening the type and number of water servicing options that can be considered for greenfield or backlog developments. The Environmental Sustainability Assessment Tool consists of a simple user interface and draws on life cycle inventory data to allow for rapid estimation of the environmental and economic performance of different water servicing scenarios. Scenario options can then be further prioritized by means of an interactive multicriteria analysis. The intent of this article is to identify the key issues to be considered in a streamlined sustainability assessment tool for the urban water industry, and to demonstrate the feasibility of generating accurate life cycle assessments and life cycle costings, using such a tool. We use a real-life case study example consisting of 3 separate scenarios for a planned urban development to show that this kind of tool can emulate life cycle assessments and life cycle costings outcomes obtained through more detailed studies. This simplified approach is aimed at supporting “sustainability thinking” early in the decision-making process, thereby encouraging more sustainable water and sewerage infrastructure solutions. Integr Environ Assess Manag 2012;8:183–193. © 2011 SETAC