• 1
    Feldmann, M., R. N. Maini, 2003. Lasker Clinical Medical Research Award. TNF defined as a therapeutic target for rheumatoid arthritis and other autoimmune diseases. Nat. Med. 9:12451250.
  • 2
    Van Hauwermeiren, F., R. E. Vandenbroucke, C. Libert, 2011. Treatment of TNF mediated diseases by selective inhibition of soluble TNF or TNFR1. Cytokine Growth Factor Rev. 22:311319.
  • 3
    Cope, A. P., R. S. Liblau, X. D. Yang, M. Congia, C. Laudanna, R. D. Schreiber, L. Probert, G. Kollias, H. O. McDevitt, 1997. Chronic tumor necrosis factor alters T cell responses by attenuating T cell receptor signaling. J. Exp. Med. 185:15731584.
  • 4
    Chen, X., M. Bäumel, D. N. Männel, O. M. Howard, J. J. Oppenheim, 2007. Interaction of TNF with TNF receptor type 2 promotes expansion and function of mouse CD4+ CD25+ T regulatory cells. J. Immunol. 179:154161.
  • 5
    Chen, X., X. Wu, Q. Zhou, O. M. Howard, M. G. Netea, J. J. Oppenheim, 2013. TNFR2 is critical for the stabilization of the CD4+ Foxp3+ regulatory T cell phenotype in the inflammatory environment. J. Immunol. 190:10761084.
  • 6
    Sade-Feldman, M., J. Kanterman, E. Ish-Shalom, M. Elnekave, E. Horwitz, M. Baniyash, 2013. Tumor Necrosis factor-alpha blocks differentiation and enhances suppressive activity of immature myeloid cells during chronic inflammation. Immunity. DOI:10.1016/j.immuni.2013.02.007
  • 7
    Zhao, X., L. Rong, X. Zhao, X. Li, X. Liu, J. Deng, H. Wu, X. Xu, U. Erben, P. Wu, 2012. TNF signaling drives myeloid-derived suppressor cell accumulation. J. Clin. Invest. 122:40944104.
  • 8
    Delano, M. J., P. O. Scumpia, J. S. Weinstein, D. Coco, S. Nagaraj, K. M. Kelly-Scumpia, K. A. O'Malley, J. L. Wynn, S. Antonenko, S. Z. AlQuran, 2007. MyD88-dependent expansion of an immature GR-1(+)CD11b(+) population induces T cell suppression and Th2 polarization in sepsis. J. Exp. Med. 204:14631474.
  • 9
    Youn, J. I., S. Nagaraj, M. Collazo, D. I. Gabrilovich, 2008. Subsets of myeloid-derived suppressor cells in tumor-bearing mice. J. Immunol. 181:57915802.
  • 10
    Schmid, M., A. K. Wege, U. Ritter, 2012. Characteristics of “Tip-DCs and MDSCs” and their potential role in leishmaniasis. Front Microbiol. 3:74.
  • 11
    Gabrilovich, D. I., S. Nagaraj 2009. Myeloid-derived suppressor cells as regulators of the immune system. Nat. Rev. Immunol. 9:162174.
  • 12
    Lutz, M. B., N. Kukutsch, A. L. Ogilvie, S. Rossner, F. Koch, N. Romani, G. Schuler, 1999. An advanced culture method for generating large quantities of highly pure dendritic cells from mouse bone marrow. J. Immunol. Methods 223:7792.
  • 13
    Naik, S. H., 2008. Demystifying the development of dendritic cell subtypes, a little. Immunol. Cell Biol. 86:439452.
  • 14
    Rossner, S., C. Voigtlander, C. Wiethe, J. Hanig, C. Seifarth, M. B. Lutz, 2005. Myeloid dendritic cell precursors generated from bone marrow suppress T cell responses via cell contact and nitric oxide production in vitro. Eur. J. Immunol. 35:35333544.
  • 15
    Bunt, S. K., L. Yang, P. Sinha, V. K. Clements, J. Leips, S. Ostrand-Rosenberg, 2007. Reduced inflammation in the tumor microenvironment delays the accumulation of myeloid-derived suppressor cells and limits tumor progression. Cancer Res. 67:1001910026.
  • 16
    Sander, L. E., S. D. Sackett, U. Dierssen, N. Beraza, R. P. Linke, M. Muller, J. M. Blander, F. Tacke, C. Trautwein, 2010. Hepatic acute-phase proteins control innate immune responses during infection by promoting myeloid-derived suppressor cell function. J. Exp. Med. 207:14531464.
  • 17
    Chen, X., J. J. Subleski, H. Kopf, O. M. Howard, D. N. Männel, J. J. Oppenheim, 2008. Cutting edge: expression of TNFR2 defines a maximally suppressive subset of mouse CD4+ CD25+ FoxP3+ T regulatory cells: applicability to tumor-infiltrating T regulatory cells. J. Immunol. 180:64676471.
  • 18
    Chen, X., J. J. Oppenheim, 2010. TNF-alpha: an activator of CD4+ FoxP3+ TNFR2+ regulatory T cells. Curr. Dir. Autoimmun. 11:119134.
  • 19
    Zhao, X., M. Mohaupt, J. Jiang, S. Liu, B. Li, Z. Qin, 2007. Tumor necrosis factor receptor 2-mediated tumor suppression is nitric oxide dependent and involves angiostasis. Cancer Res. 67:44434450.
  • 20
    Angulo, I., J. Rullas, J. A. Campillo, E. Obregon, A. Heath, M. Howard, M. A. Munoz-Fernandez, J. L. Subiza, 2000. Early myeloid cells are high producers of nitric oxide upon CD40 plus IFN-gamma stimulation through a mechanism dependent on endogenous TNF-alpha and IL-1alpha. Eur. J. Immunol. 30:12631271.
  • 21
    Gabrilovich, D. I., S. Ostrand-Rosenberg, V. Bronte, 2012. Coordinated regulation of myeloid cells by tumors. Nat. Rev. Immunol. 12:253268.
  • 22
    Martin, E. M., A. Remke, E. Pfeifer, J. Polz, A. Pietryga-Krieger, D. Steffens-Weber, M. A. Freudenberg, S. Mostböck, D. N. Männel, 2013. TNFR2 maintains adequate IL-12 production by dendritic cells in inflammatory responses by regulating endogenous TNF levels. Innate. Immun. DOI:10.1177/1753425913506949
  • 23
    Ebach, D. R., T. E. Riehl, W. F. Stenson, 2005. Opposing effects of tumor necrosis factor receptor 1 and 2 in sepsis due to cecal ligation and puncture. Shock 23:311318.
  • 24
    Arnott, C. H., K. A. Scott, R. J. Moore, S. C. Robinson, R. G. Thompson, F. R. Balkwill, 2004. Expression of both TNF-alpha receptor subtypes is essential for optimal skin tumour development. Oncogene 23:19021910.
  • 25
    Sterns, T., N. Pollak, B. Echtenacher, D. N. Männel, 2005. Divergence of protection induced by bacterial products and sepsis-induced immune suppression. Infection and Immunity 73:49054912.
  • 26
    Echtenacher, B., D. N. Männel, 2002. Requirement of TNF and TNF receptor type 2 for LPS-induced protection from lethal septic peritonitis. J. Endotoxin. Res. 8:365369.
  • 27
    Vaknin, I., L. Blinder, L. Wang, R. Gazit, E. Shapira, O. Genina, M. Pines, E. Pikarsky, M. Baniyash, 2008. A common pathway mediated through Toll-like receptors leads to T- and natural killer-cell immunosuppression. Blood 111:14371447.
  • 28
    Erickson, S. L., F. J. de Sauvage, K. Kikly, K. Carver-Moore, S. Pitts-Meek, N. Gillett, K. C. Sheehan, R. D. Schreiber, D. V. Goeddel, M. W. Moore, 1994. Decreased sensitivity to tumour-necrosis factor but normal T-cell development in TNF receptor-2-deficient mice. Nature 372:560563.
  • 29
    Shen, F. W., Y. Saga, G. Litman, G. Freeman, J. S. Tung, H. Cantor, E. A. Boyse, 1985. Cloning of Ly-5 cDNA. Proc. Natl. Acad. Sci. USA 82:73607363.
  • 30
    Korner, H., M. Cook, D. S. Riminton, F. A. Lemckert, R. M. Hoek, B. Ledermann, F. Kontgen, B. Fazekas de St. Groth, J. D. Sedgwick, 1997. Distinct roles for lymphotoxin-alpha and tumor necrosis factor in organogenesis and spatial organization of lymphoid tissue. Eur. J. Immunol. 27:26002609.
  • 31
    Echtenacher, B., W. Falk, D. N. Männel, P. H. Krammer, 1990. Requirement of endogenous tumor-necrosis-factor cachectin for recovery from experimental peritonitis. J. Immunol. 145:37623766.
  • 32
    Pollak, N., T. Sterns, B. Echtenacher, D. N. Männel, 2005. Improved resistance to bacterial superinfection in mice by treatment with macrophage migration inhibitory factor. Infect. Immun. 73:64886492.