• 1
    Bosch, F. X., T. R. Broker, D. Forman, A. B. Moscicki, M. L. Gillison, J. Doorbar, P. L. Stern, M. Stanley, M. Arbyn, M. Poljak, et al. 2013. Comprehensive control of hpv infections and related diseases. Vaccine. 31(Suppl 8):I131.
  • 2
    Walboomers, J. M., M. V. Jacobs, M. M. Manos, F. X. Bosch, J. A. Kummer, K. V. Shah, P. J. Snijders, J. Peto, C. J. Meijer, and N. Muñoz, 1999. Human papillomavirus is a necessary cause of invasive cervical cancer worldwide. J. Pathol. 189:1219.
  • 3
    Pirami, L., V. Giachè, and A. Becciolini, 1997. Analysis of HPV16, 18, 31, and 35 DNA in pre-invasive and invasive lesions of the uterine cervix. J. Clin. Pathol. 50:600604.
  • 4
    Cullen, A. P., R. Reid, M. Campion, and A. T. Lorincz, 1991. Analysis of the physical state of different human papillomavirus DNAs in intraepithelial and invasive cervical neoplasm. J. Virol. 65:606612.
  • 5
    Duensing, S., and K. Münger, 2003. Centrosome abnormalities and genomic instability induced by human papillomavirus oncoproteins. Prog. Cell Cycle Res. 5:383391.
  • 6
    Johung, K., E. C. Goodwin, and D. DiMaio, 2007. Human papillomavirus E7 repression in cervical carcinoma cells initiates a transcriptional cascade driven by the retinoblastoma family, resulting in senescence. J. Virol. 81:21022116.
  • 7
    Fujii, T., M. Saito, E. Iwasaki, T. Ochiya, Y. Takei, S. Hayashi, A. Ono, N. Hirao, M. Nakamura, K. Kubushiro, et al. 2006. Intratumor injection of small interfering RNA-targeting human papillomavirus 18 E6 and E7 successfully inhibits the growth of cervical cancer. Int. J. Oncol. 29:541548.
  • 8
    Tindle, R. W. 2002. Immune evasion in human papillomavirus-associated cervical cancer. Nat. Rev. Cancer. 2:5965.
  • 9
    de Gruijl, T. D., H. J. Bontkes, J. M. Walboomers, M. J. Stukart, F. S. Doekhie, A. J. Remmink, T. J. Helmerhorst, R. H. Verheijen, M. F. Duggan-Keen, P. L. Stern, et al. 1998. Differential T helper cell responses to human papillomavirus type 16 E7 related to viral clearance or persistence in patients with cervical neoplasia: a longitudinal study. Cancer Res. 58:17001706.
  • 10
    de Jong, A., S. H. van der Burg, K. M. Kwappenberg, J. M. van der Hulst, K. L. Franken, A. Geluk, K. E. van Meijgaarden, J. W. Drijfhout, G. Kenter, P. Vermeij, et al. 2002. Frequent detection of human papillomavirus 16 E2-specific T-helper immunity in healthy subjects. Cancer Res. 62(2):472479.
  • 11
    Barashi, N., I. D. Weiss, O. Wald, H. Wald, K. Beider, M. Abraham, S. Klein, D. Goldenberg, J. Axelrod, E. Pikarsky, et al. 2013. Inflammation induced hepatocellular carcinoma is dependent on CCR5. Hepatology. 58(3):10211030.
  • 12
    Guerra, C., M. Collado, C. Navas, A. J. Schuhmacher, I. Hernández-Porras, M. Cañamero, M. Rodriguez-Justo, M. Serrano, and M. Barbacid, 2011. Pancreatitis-induced inflammation contributes to pancreatic cancer by inhibiting oncogene-induced senescence. Cancer Cell. 19:728739.
  • 13
    Pollard, J. W. 2008. Macrophages define the invasive microenvironment in breast cancer. J. Leukoc. Biol. 84:623630.
  • 14
    Candido, J., and T. Hagemann, 2013. Cancer-related inflammation. J. Clin. Immunol. 33(Suppl 1):S79S84.
  • 15
    Balkwill, F. R., and A. Mantovani, 2012. Cancer-related inflammation: common themes and therapeutic opportunities. Semin. Cancer Biol. 22:3340.
  • 16
    Williams, V. M., M. Filippova, U. Soto, and P. J. Duerksen-Hughes, 2011. HPV-DNA integration and carcinogenesis: putative roles for inflammation and oxidative stress. Fut. Virol. 6:4557.
  • 17
    Feng, Q., H. Wei, J. Morihara, J. Stern, M. Yu, N. Kiviat, I. Hellstrom, and K. E. Hellstrom, 2012. Th2 type inflammation promotes the gradual progression of HPV-infected cervical cells to cervical carcinoma. Gynecol. Oncol. 127:412419.
  • 18
    Trimble, C., R. Clark, N. Hanson, J. Tassello, D. Frosina, J. Teague, J. Jiang, N. Barat, F. Kos, C. Thoburn, et al. 2010. Cervical mucosal CD8 T cells are more predictive of HPV lesion regression than systemic HPV-specific response. J. Immunol. 185:71077114.
  • 19
    Piersma, S. J., E. S. Jordanova, M. I. van Poelgeest, K. M. Kwappenberg, J. M. van der Hulst, J. W. Drijfhout, C. J. Melief, G. G. Kenter, G. J. Fleuren, R. Offringa, et al. 2007. High number of intraepithelial CD8+ tumor-infiltrating lymphocytes is associated with the absence of lymph node metastases in patients with large early-stage cervical cancer. Cancer Res. 67:354361.
  • 20
    Kobayashi, A., V. Weinberg, T. Darragh, and K. Smith-McCune, 2008. Evolving immunosuppressive microenvironment during human cervical carcinogenesis. Mucosal Immunol. 1:412420.
  • 21
    Mazibrada, J., M. Rittà, M. Mondini, M. De Andrea, B. Azzimonti, C. Borgogna, M. Ciotti, A. Orlando, N. Surico, L. Chiusa, et al. 2008. Interaction between inflammation and angiogenesis during different stages of cervical carcinogenesis. Gynecol. Oncol. 108:112120.
  • 22
    Pahler, J. C., S. Tazzyman, N. Erez, Y. Y. Chen, C. Murdoch, H. Nozawa, C. E. Lewis, and D. Hanahan, 2008. Plasticity in tumor-promoting inflammation: impairment of macrophage recruitment evokes a compensatory neutrophil response. Neoplasia. 10:329340.
  • 23
    Lepique, A. P., K. R. Daghastanli, I. M. Cuccovia, and L. L. Villa, 2009. HPV16 tumor associated macrophages suppress antitumor T cell responses. Clin. Cancer Res. 15:43914400.
  • 24
    Garcia-Arias, A., L. Cetina, M. Candelaria, E. Robles, and A. Dueñas-González, 2007. The prognostic significance of leukocytosis in cervical cancer. Int. J. Gynecol. Cancer. 17:465470.
  • 25
    Mabuchi, S., Y. Matsumoto, T. Hamasaki, M. Kawano, T. Hisamatsu, D. G. Mutch, and T. Kimura, 2012. Elevated white blood cell count at the time of recurrence diagnosis is an indicator of short survival in patients with recurrent cervical cancer. Int. J. Gynecol. Cancer. 22:15451551.
  • 26
    Gabrilovich, D. I., M. P. Velders, E. M. Sotomayor, and W. M. Kast, 2001. Mechanism of immune dysfunction in cancer mediated by immature Gr-1+ myeloid cells. J. Immunol. 166:53985406.
  • 27
    Bolpetti, A., J. S. Silva, L. L. Villa, and A. P. Lepique, 2010. Interleukin-10 production by tumor infiltrating macrophages plays a role in human papillomavirus 16 tumor growth. BMC Immunol. 11:27.
  • 28
    Leone, V., T. C. Hsu, and C. M. Pomerat, Cytological studies on HeLa, a strain of human cervical carcinoma.II. 1955. On rotatory movements of the nuclei. Zeitschrift fur Zellforschung und mikroskopische Anatomie. 41:481492.
  • 29
    Friedl, F., I. Kimura, T. Osato, and Y. Ito, 1970. Studies on a new human cell line (SiHa) derived from carcinoma of uterus. I. Its establishment and morphology. Proctol. Soc. Exp. Biol. Med. 135:543545.
  • 30
    Crook, T., D. Wrede, and K. H. Vousden, 1991. p53 point mutation in HPV negative human cervical carcinoma cell lines. Oncogene. 6:873875.
  • 31
    Gordon, K. M., L. Duckett, B. Daul, and H. T. Petrie, 2003. A simple method for detecting up to five immunofluorescent parameters together with DNA staining for cell cycle or viability on a benchtop flow cytometer. J. Immunol. Methods. 275:113121.
  • 32
    Baniyash, M. 2004. TCR zeta-chain downregulation: curtailing an excessive inflammatory immune response. Nat. Rev. Immunol. 4:675687.
  • 33
    He, G., G. Yu, V. Temkin, H. Ogata, C. Kuntzen, T. Sakurai, W. Sieghart, W. Peck-Radosavljevic, H. L. Leffert, and M. Karin, 2010. Hepatocyte IKKβ/NF-κB inhibits tumor promotion and progression by preventing oxidative stress driven STAT3 activation. Cancer Cell. 17:286297.
  • 34
    Alberti, C., P. Pinciroli, B. Valeri, R. Ferri, A. Ditto, K. Umezawa, M. Sensi, S. Canevari, and A. Tomassetti, 2012. Ligand-dependent EGFR activation induces the co-expression of IL-6 and PAI-1 via the NFkB pathway in advanced-stage epithelial ovarian cancer. Oncogene. 31:41394149.
  • 35
    Youn, J., M. Collazo, I. N. Shalova, S. K. Biswas, and D. I. Gabrilovich, 2012. Characterization of the nature of granulocytic myeloid-derived suppressor cells in tumor-bearing mice. J. Leukoc. Biol. 91:167181.
  • 36
    Pyeon, D., M. A. Newton, P. F. Lambert, J. A. den Boon, S. Sengupta, C. J. Marsit, C. D. Woodworth, J. P. Connor, T. H. Haugen, E. M. Smith, et al. 2007. Fundamental differences in cell cycle deregulation in human papillomavirus-positive and human papillomavirus-negative head/neck and cervical cancers. Cancer Res. 67:46054619.
  • 37
    Ruscetti, F. W. 1994. Hematologic effects of interleukin-1 and interleukin-6. Curr. Opin. Hematol. 1:210215.
  • 38
    Jenkins, B. J., A. W. Roberts, C. J. Greenhill, M. Najdovska, T. Lundgren-May, L. Robb, D. Grail, and M. Ernst, 2007. Pathologic consequences of STAT3 hyperactivation by IL-6 and IL-11 during hematopoiesis and lymphopoiesis. Blood. 109:23802388.
  • 39
    Heusinkveld, M., P. J. de Vos van Steenwijk, R. Goedemans, T. H. Ramwadhdoebe, A. Gorter, M. J. Welters, T. van Hall, and S. H. van der Burg, 2011. M2 macrophages induced by prostaglandin E2 and IL-6 from cervical carcinoma are switched to activated M1 macrophages by CD4+ Th1 cells. J. Immunol. 187:11571165.
  • 40
    Tjiong, M. Y., N. van der Vange, F. J. ten Kate, S. P. Tjong-A-Hung, J. terSchegget, M. P. Burger, and T. A. Out, 1999. Increased IL-6 and IL-8 levels in cervicovaginal secretions of patients with cervical cancer. Gynecol. Oncol. 73:285291.
  • 41
    Ibrahim, S. A., H. Hassan, L. Vilardo, S. K. Kumar, A. V. Kumar, R. Kelsch, C. Schneider, L. Kiesel, H. T. Eich, I. Zucchi, et al. 2013. Syndecan-1 (CD138) modulates triple-negative breast cancer stem cell properties via regulation of LRP-6 and IL-6-mediated STAT3 signaling. PLoS ONE. 8:e85737.
  • 42
    Duffy, S. A1., J. M. Taylor, J. E. Terrell, M. Islam, Y. Li, K. E. Fowler, G. T. Wolf, and T. N. Teknos, 2008. Interleukin-6 predicts recurrence and survival among head and neck cancer patients. Cancer. 113(4):750757.
  • 43
    Gouwy, M., S. Struyf, S. Noppen, E. Schutyser, J. Y. Springael, M. Parmentier, P. Proost, and J. Van Damme, 2008. Synergy between coproduced CC and CXC chemokines in monocyte chemotaxis through receptor-mediated events. Mol. Pharmacol. 74:485495.
  • 44
    Waugh, D. J., and C. Wilson, 2008. The interleukin-8 pathway in cancer. Clin. Cancer Res. 14(21):67356741.
  • 45
    Vandercappellen, J., J. Van Damme, and S. Struyf, 2008. The role of CXC chemokines and their receptors in cancer. Cancer Lett. 267:226244.
  • 46
    Wu, S., H. Shang, L. Cui, Z. Zhang, Y. Zhang, Y. Li, J. Wu, R. K. Li, and J. Xie, 2013. Targeted blockade of interleukin-8 abrogates its promotion of cervical cancer growth and metastasis. Mol. Cell. Biochem. 375:6979.
  • 47
    Acharyya, S., T. Oskarsson, S. Vanharanta, S. Malladi, J. Kim, P. G. Morris, K. Manova-Todorova, M. Leversha, N. Hogg, V. E. Seshan, et al. 2012. A CXCL1 paracrine network links cancer chemoresistance and metastasis. Cell. 150:165178.
  • 48
    Van Ginderachter, J. A., S. Meerschaut, Y. Liu, L. Brys, K. De Groeve, G. Hassanzadeh Ghassabeh, G. Raes, and P. De Baetselier, 2006. Peroxisome proliferator-activated receptor gamma (PPARgamma) ligands reverse CTL suppression by alternatively activated (M2) macrophages in cancer. Blood. 108:525535.
  • 49
    Richmond, J., M. Tuzova, W. Cruikshank, and D. Center, 2014. Regulation of cellular processes by interleukin-16 in homeostasis and cancer. J. Cell. Physiol. 229:139147.
  • 50
    Mahindra, A., and K. C. Anderson, 2012. Role of interleukin 16 in multiple myeloma pathogenesis: a potential novel therapeutic target? J. Natl. Cancer Inst. 104:964965.
  • 51
    Petanidis, S., D. Anestakis, M. Argyraki, M. Hadzopoulou-Cladaras, and A. Salifoglou, 2013. Differential expression of IL-17, 22 and 23 in the progression of colorectal cancer in patients with K-ras mutation: Ras signal inhibition and crosstalk with GM-CSF and IFN-γ. PLoS ONE. 8:e73616.
  • 52
    Sundrud, M. S., and C. Trivigno, 2013. Identity crisis of Th17 cells: Many forms, many functions, many questions. Semin. Immunol. 4:263272.
  • 53
    Fuchs, A., and M. Colonna, 2013. Innate lymphoid cells in homeostasis, infection, chronic inflammation and tumors of the gastrointestinal tract. Curr. Opin. Gastroenterol. 29:581587.
  • 54
    Song, X., H. Gao, Y. Lin, Y. Yao, S. Zhu, J. Wang, Y. Liu, X. Yao, G. Meng, N. Shen, et al. 2014. Alterations in the microbiota drive interleukin-17C production from intestinal epithelial cells to promote tumorigenesis. Immunity. 40:140152.