• 1
    Hancock, R. E., and G. Diamond. 2000. The role of cationic antimicrobial peptides in innate host defences. Trends Microbiol. 8:402410.
  • 2
    Zasloff, M. 2002. Antimicrobial peptides of multicellular organisms. Nature 415:389395.
  • 3
    Zaiou, M., and R. L. Gallo. 2002. Cathelicidins, essential gene-encoded mammalian antibiotics. J. Mol. Med. 80:549561.
  • 4
    Dorschner, R. A., V. K. Pestonjamasp, S. Tamakuwala, T. Ohtake, J. Rudisill, V. Nizet, B. Agerberth, G. H. Gudmundsson, and R. L. Gallo. 2001. Cutaneous injury induces the release of cathelicidin anti-microbial peptides active against group A Streptococcus. J. Invest. Dermatol. 117:9197.
  • 5
    Chromek, M., Z. Slamova, P. Bergman, L. Kovacs, L. Podracka, I. Ehren, T. Hokfelt, G. H. Gudmundsson, R. L. Gallo, B. Agerberth, and A. Brauner. 2006. The antimicrobial peptide cathelicidin protects the urinary tract against invasive bacterial infection. Nat. Med. 12:636641.
  • 6
    Tollin, M., P. Bergman, T. Svenberg, H. Jornvall, G. H. Gudmundsson, and B. Agerberth. 2003. Antimicrobial peptides in the first line defence of human colon mucosa. Peptides 24:523530.
  • 7
    Bergman, P., L. Johansson, H. Wan, A. Jones, R. L. Gallo, G. H. Gudmundsson, T. Hokfelt, A. B. Jonsson, and B. Agerberth. 2006. Induction of the antimicrobial peptide CRAMP in the blood-brain barrier and meninges after meningococcal infection. Infect. Immun. 74:69826991.
  • 8
    Rosenberger, C. M., R. L. Gallo, and B. B. Finlay. 2004. Interplay between antibacterial effectors: a macrophage antimicrobial peptide impairs intracellular Salmonella replication. Proc. Natl. Acad. Sci. USA. 101:24222427.
  • 9
    Gudmundsson, G. H., K. P. Magnusson, B. P. Chowdhary, M. Johansson, L. Andersson, and H. G. Boman. 1995. Structure of the gene for porcine peptide antibiotic PR-39, a cathelin gene family member: comparative mapping of the locus for the human peptide antibiotic FALL-39. Proc. Natl. Acad. Sci. USA. 92:70857089.
  • 10
    Gallo, R. L., K. J. Kim, M. Bernfield, C. A. Kozak, M. Zanetti, L. Merluzzi, and R. Gennaro. 1997. Identification of CRAMP, a cathelin-related antimicrobial peptide expressed in the embryonic and adult mouse. J. Biol. Chem. 272:1308813093.
  • 11
    Pestonjamasp, V. K., K. H. Huttner, and R. L. Gallo. 2001. Processing site and gene structure for the murine antimicrobial peptide CRAMP. Peptides 22:16431650.
  • 12
    Zanetti, M., R. Gennaro, M. Scocchi, and B. Skerlavaj. 2000. Structure and biology of cathelicidins. Adv. Exp. Med. Biol. 479:203218.
  • 13
    Agerberth, B., H. Gunne, J. Odeberg, P. Kogner, H. G. Boman, and G. H. Gudmundsson. 1995. FALL-39, a putative human peptide antibiotic, is cysteine-free and expressed in bone marrow and testis. Proc. Natl. Acad. Sci. USA. 92:195199.
  • 14
    Brogden, K. A. 2005. Antimicrobial peptides: pore formers or metabolic inhibitors in bacteria? Nat. Rev. Microbiol. 3:238250.
  • 15
    Chakraborty, K., S. Ghosh, H. Koley, A. K. Mukhopadhyay, T. Ramamurthy, D. R. Saha, D. Mukhopadhyay, S. Roychowdhury, T. Hamabata, Y. Takeda, and S. Das. 2008. Bacterial exotoxins downregulate cathelicidin (hCAP-18/LL-37) and human beta-defensin 1 (HBD-1) expression in the intestinal epithelial cells. Cell Microbiol. 10:25202537.
  • 16
    Sperandio, B., B. Regnault, J. Guo, Z. Zhang, S. L. Stanley, Jr., P. J. Sansonetti, and T. Pedron. 2008. Virulent Shigella flexneri subverts the host innate immune response through manipulation of antimicrobial peptide gene expression. J. Exp. Med. 205:11211132.
  • 17
    Nizet, V., T. Ohtake, X. Lauth, J. Trowbridge, J. Rudisill, R. A. Dorschner, V. Pestonjamasp, J. Piraino, K. Huttner, and R. L. Gallo. 2001. Innate antimicrobial peptide protects the skin from invasive bacterial infection. Nature 414:454457.
  • 18
    Bowdish, D. M., D. J. Davidson, and R. E. Hancock. 2006. Immunomodulatory properties of defensins and cathelicidins. Curr. Top. Microbiol. Immunol. 306:2766.
  • 19
    De, Y., Q. Chen, A. P. Schmidt, G. M. Anderson, J. M. Wang, J. Wooters, J. J. Oppenheim, and O. Chertov. 2000. LL-37, the neutrophil granule- and epithelial cell-derived cathelicidin, utilizes formyl peptide receptor-like 1 (FPRL1) as a receptor to chemoattract human peripheral blood neutrophils, monocytes, and T cells. J. Exp. Med. 192:10691074.
  • 20
    Kai-Larsen, Y., and B. Agerberth. 2008. The role of the multifunctional peptide LL-37 in host defense. Front Biosci. 13:37603767.
  • 21
    Appelberg, R. 2006. Pathogenesis of Mycobacterium avium infection: typical responses to an atypical mycobacterium? Immunol. Res. 35:179190.
  • 22
    Russell, D. G. 2001. Mycobacterium tuberculosis: here today, and here tomorrow. Nat. Rev. Mol. Cell. Biol. 2:569577.
  • 23
    Sonawane, A., J. C. Santos, B. B. Mishra, P. Jena, C. Progida, O. E. Sorensen, R. Gallo, R. Appelberg, and G. Griffiths. 2011. Cathelicidin is involved in the intracellular killing of mycobacteria in macrophages. Cell Microbiol. 13:16011617.
  • 24
    Liu, P. T., S. Stenger, H. Li, L. Wenzel, B. H. Tan, S. R. Krutzik, M. T. Ochoa, J. Schauber, K. Wu, C. Meinken, D. L. Kamen, M. Wagner, R. Bals, A. Steinmeyer, U. Zugel, R. L. Gallo, D. Eisenberg, M. Hewison, B. W. Hollis, J. S. Adams, B. R. Bloom, and R. L. Modlin. 2006. Toll-like receptor triggering of a vitamin D-mediated human antimicrobial response. Science 311:17701773.
  • 25
    Liu, P. T., S. Stenger, D. H. Tang, and R. L. Modlin. 2007. Cutting edge: vitamin D-mediated human antimicrobial activity against Mycobacterium tuberculosis is dependent on the induction of cathelicidin. J. Immunol. 179:20602063.
  • 26
    Florido, M., and R. Appelberg. 2007. Characterization of the deregulated immune activation occurring at late stages of mycobacterial infection in TNF-deficient mice. J. Immunol. 179:77027708.
  • 27
    Gomes, M. S., and R. Appelberg. 2002. NRAMP1- or cytokine-induced bacteriostasis of Mycobacterium avium by mouse macrophages is independent of the respiratory burst. Microbiology 148:31553160.
  • 28
    Gomes, M. S., S. Sousa Fernandes, J. V. Cordeiro, S. Silva Gomes, A. Vieira, and R. Appelberg. 2008. Engagement of Toll-like receptor 2 in mouse macrophages infected with Mycobacterium avium induces non-oxidative and TNF-independent anti-mycobacterial activity. Eur. J. Immunol. 38:21802189.
  • 29
    Kawai, T., and S. Akira. 2006. TLR signaling. Cell Death Differ. 13:816825.
  • 30
    Li, G., J. Domenico, Y. Jia, J. J. Lucas, and E. W. Gelfand. 2009. NF-kappaB-dependent induction of cathelicidin-related antimicrobial peptide in murine mast cells by lipopolysaccharide. Int. Arch. Allergy Immunol. 150:122132.
  • 31
    Liu, P. T., M. Schenk, V. P. Walker, P. W. Dempsey, M. Kanchanapoomi, M. Wheelwright, A. Vazirnia, X. Zhang, A. Steinmeyer, U. Zugel, B. W. Hollis, G. Cheng, and R. L. Modlin. 2009. Convergence of IL-1beta and VDR activation pathways in human TLR2/1-induced antimicrobial responses. PLoS ONE 4:e5810.
  • 32
    Wang, T. T., F. P. Nestel, V. Bourdeau, Y. Nagai, Q. Wang, J. Liao, L. Tavera-Mendoza, R. Lin, J. W. Hanrahan, S. Mader, and J. H. White. 2004. Cutting edge: 1,25-dihydroxyvitamin D3 is a direct inducer of antimicrobial peptide gene expression. J. Immunol. 173:29092912.
  • 33
    Gombart, A. F., N. Borregaard, and H. P. Koeffler. 2005. Human cathelicidin antimicrobial peptide (CAMP) gene is a direct target of the vitamin D receptor and is strongly up-regulated in myeloid cells by 1,25-dihydroxyvitamin D3. FASEB J. 19:10671077.
  • 34
    Wuerth, K., and R. E. Hancock. 2011. New insights into cathelicidin modulation of adaptive immunity. Eur. J. Immunol. 41:28172819.
  • 35
    van der Does, A. M., H. Beekhuizen, B. Ravensbergen, T. Vos, T. H. Ottenhoff, J. T. van Dissel, J. W. Drijfhout, P. S. Hiemstra, and P. H. Nibbering. 2010. LL-37 directs macrophage differentiation toward macrophages with a proinflammatory signature. J. Immunol. 185:14421449.
  • 36
    Brown, K. L., G. F. Poon, D. Birkenhead, O. M. Pena, R. Falsafi, C. Dahlgren, A. Karlsson, J. Bylund, R. E. Hancock, and P. Johnson. 2011. Host defense peptide LL-37 selectively reduces proinflammatory macrophage responses. J. Immunol. 186:54975505.
  • 37
    Davidson, D. J., A. J. Currie, G. S. Reid, D. M. Bowdish, K. L. MacDonald, R. C. Ma, R. E. Hancock, and D. P. Speert. 2004. The cationic antimicrobial peptide LL-37 modulates dendritic cell differentiation and dendritic cell-induced T cell polarization. J. Immunol. 172:11461156.
  • 38
    Kin, N. W., Y. Chen, E. K. Stefanov, R. L. Gallo, and J. F. Kearney. 2011. Cathelin-related antimicrobial peptide differentially regulates T- and B-cell function. Eur. J. Immunol. 41:30063016.
  • 39
    Borregaard, N., O. E. Sorensen, and K. Theilgaard-Monch. 2007. Neutrophil granules: a library of innate immunity proteins. Trends Immunol. 28:340345.
  • 40
    Silva, M. T., M. N. Silva, and R. Appelberg. 1989. Neutrophil-macrophage cooperation in the host defence against mycobacterial infections. Microb. Pathog. 6:369380.
  • 41
    Appelberg, R., A. G. Castro, S. Gomes, J. Pedrosa, and M. T. Silva. 1995. Susceptibility of beige mice to Mycobacterium avium: role of neutrophils. Infect. Immun. 63:33813387.
  • 42
    Castaneda-Delgado, J., R. Hernandez-Pando, C. J. Serrano, D. Aguilar-Leon, J. Leon-Contreras, C. Rivas-Santiago, R. Mendez, I. Gonzalez-Curiel, A. Enciso-Moreno, and B. Rivas-Santiago. 2010. Kinetics and cellular sources of cathelicidin during the course of experimental latent tuberculous infection and progressive pulmonary tuberculosis. Clin. Exp. Immunol. 161:542550.
  • 43
    Pais, T. F., J. F. Cunha, and R. Appelberg. 2000. Antigen specificity of T-cell response to Mycobacterium avium infection in mice. Infect. Immun. 68:48054810.
  • 44
    Livak, K. J., and T. D. Schmittgen. 2001. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) method. Methods 25:402408.