• 1
    Pamer E, Cresswell P. Mechanisms of MHC cass I–restricted antigen processing. Annu Rev Immunol 1998;16: 32358.
  • 2
    Rock KL, Goldberg AL. Degradation of cell proteins and the generation of MHC class I–presented peptides. Annu Rev Immunol 1999;17: 73979.
  • 3
    Voges D, Zwickl P, Baumeister W. The 26S proteasome: a molecular machine designed for controlled proteolysis. Annu Rev Biochem 1999;68: 101568.
  • 4
    Driscoll J, Brown MG, Finley D, Monaco JJ. MHC-linked LMP genes products specifically alter peptidase activities of the proteasome. Nature 1993;365: 2624.
  • 5
    Lee DH, Goldberg AL. Proteasome inhibitors: valuable new tools for cell biologists. Trends Cell Biol 1998;8: 397403.
  • 6
    Rock KL, Gramm C, Rothstein L, Clark K, Stein R, Dick L, Hwang D, Goldberg AL. Inhibitors of the proteasome block the degradation of most cell proteins and the generation of peptides presented on MHC class I molecules. Cell 1994;78: 76171.
  • 7
    Benham AM, Gromme M, Neefjes J. Allelic differences in the relationship between proteasome activity and MHC class 1 peptide loading. J Immunol 1998;161: 839.
  • 8
    Vinitsky A, Anton LC, Snyder HL, Orlowski M, Bennink JR, Yewdell JW. The generation of MHC class I–associated peptides is only partially inhibited by proteasome inhibitors: involvement of nonproteasomal cytosolic proteases in antigen processing? J Immunol 1997;159: 55464.
  • 9
    Luckey CJ, King GM, Marto JA, Venketeswaran S, Maier BF, Crotzer VL, Colella TA, Shabanowitz J, Hunt DF, Engelhard VH. Proteasomes can either generate or destroy MHC class I epitopes: evidence for nonproteasomal epitope generation in the cytosol. J Immunol 1998;161: 11221.
  • 10
    Valmori D, Gileadi U, Servis C, Dunbar PR, Cerottini J-C, Romero P, Cerundolo V, Levy F. Modulation of proteasomal activity required for the generation of a cytotoxic T lymphocyte–defined peptide derived from the tumor antigen MAGE-3. J Exp Med 1999;189: 895905.
  • 11
    Schwarz K, de Giuli R, Schmidtke G, Kostka S, van den Broek M, Bo Kim K, Crews CM, Kraft R, Groettrup M. The selective proteasome inhibitors lactacystin and epoxomicin can be used to either up- or down-regulate antigen presentation at nontoxic doses. J Immunol 2000;164: 614757.
  • 12
    Seliger B, Maeurer MJ, Ferrone S. Antigen-processing machinery breakdown and tumor growth. Immunol Today 2000;21: 45564.
  • 13
    Rickinson AB, Moss DJ. Human cytotoxic T lymphocyte responses to Epstein-Barr virus infection. Annu Rev Immunol 1997;15: 40531.
  • 14
    Masucci MG, Torsteinsdottir S, Colombani J, Brautbar C, Klein E, Klein G. Down-regulation of class I HLA antigens and of the Epstein-Barr virus encoded latent membrane protein in Burkitt's lymphoma lines. Proc Natl Acad Sci USA 1987;84: 456771.
  • 15
    Khanna R, Burrows SR, Moss DJ, Silins SL. 1996. Peptide transporter (TAP-1 and TAP-2)-independent endogenous processing of Epstein-Barr virus (EBV) latent membrane protein 2A: implications for cytotoxic T-lymphocyte control of EBV-associated malignancies. J Virol 1996;70: 535762.
  • 16
    Frisan T, Zhang Q-J, Levitskaya J, Coram M, Kurilla MG, Masucci MG. Defective presentation of MHC class I–restricted cytotoxic T-cell epitopes in Burkitt's lymphoma cells. Int J Cancer 1996;68: 2518.
  • 17
    Khanna R, Busson P, Burrows SR, Raffoux C, Moss DJ, Nicholls JM, Cooper L. Molecular characterization of antigen-processing function in nasopharyngeal carcinoma (NPC). Evidence for efficient presentation of Epstein-Barr virus cytotoxic T-cell epitopes by NPC cells. Cancer Res 1998;15: 3104.
  • 18
    Frisan T, Levitsky V, Polack A, Masucci M. Phenotype-dependent differences in proteasome subunit composition and cleavage specificity in B cell lines. J Immunol 1998;160: 32819.
  • 19
    Frisan T, Levitsky V, Masucci MG. 2000. Variations in proteasome subunit composition and enzymatic activity in B-lymphoma lines and normal B cells. Int J Cancer 2000;88: 8818.
  • 20
    Gavioli R, Frisan T, Vertuani S, Bornkamm GW, Masucci MG. c-Myc overexpression activates alternative pathways for intracellular proteolysis in lymphoma cells. Nat Cell Biol 2001;3: 2838.
  • 21
    Micheletti F, Guerrini R, Formentin A, Canella A, Marastoni M, Bazzaro M, Tomatis R, Traniello S, Gavioli R. Selective amino acid substitutions of a subdominant Epstein-Barr virus LMP2-derived epitope increase HLA/peptide complex stability and immunogenicity: implications for immunotherapy of Epstein-Barr virus–associated malignancies. Eur J Immunol 1999;29: 257989.
  • 22
    Lenoir G, Vuillaume M, Bonnardel C. The use of lymphomatous and lymphoblastoid cell lines in the study of Burkitt's lymphoma. In: LenoirG, O'ConorG, OlwenyCLM, eds. Burkitt's lymphoma human cancer model, vol 60. Lyon: IARC, 1985. 30918.
  • 23
    Salter RD, Cresswell P. Impaired assembly and transport of HLA-A and -B antigens in a mutant TxB cell hybrid. EMBO J 1986;5: 9439.
  • 24
    Gavioli R, Kurilla MG, de Campos-Lima PO, Wallace LE, Dolcetti R, Murray RJ, Rickinson AB, Masucci MG. Multiple HLA A11-restricted cytotoxic T-lymphocyte epitopes of different immunogenicities in the Epstein-Barr virus–encoded nuclear antigen 4. J Virol 1993;67: 15728.
  • 25
    Lee SP, Thomas WA, Murray RJ, Khanim F, Kaur S, Young LS, Rowe M, Kurilla M, Rickinson AB. HLA A2.1-restricted cytotoxic T cells recognizing a range of Epstein-Barr virus isolates through a defined epitope in latent membrane protein LMP2. J Virol 1993;67: 742835.
  • 26
    Khanna R, Burrows SR, Nicholls J, Poulsen LM. 1998. Identification of cytotoxic T cell epitopes within Epstein-Barr virus (EBV) oncogene latent membrane protein 1 (LMP1): evidence for HLA A2 supertype–restricted immune recognition of EBV-infected cells by LMP1-specific cytotoxic T lymphocytes. Eur J Immunol 1998;28: 4518.
  • 27
    Gaczynska M, Rock KL, Goldberg AL. γ-Interferon and expression of MHC genes regulate peptide hydrolysis by proteosomes. Nature 1993;365: 2647.
  • 28
    Fenteany G, Standaert RF, Lane WS, Choi S, Corey EJ, Schreiber SL. Inhibition of proteasome activities and subunit-specific amino-terminal threonine modification by lactacystin. Science 1995;268: 72631.
  • 29
    Lee DH, Goldberg AL. Selective inhibitors of the proteasome-dependent and vacuolar pathways of protein degradation in Saccharomyces cerevisiae. J Biol Chem 1996;271: 272804.
  • 30
    Bogyo M, McMaster JS, Gaczynska M, Tortorella D, Goldberg AL, Ploegh H. 1997. Covalent modification of the active site threonine of proteasomal β subunits and the Escherichia coli homolog Hs1V by a new class of inhibitors. Proc Natl Acad Sci USA 1997;94: 662934.
  • 31
    Kim KB, Myung J, Sin N, Crews CM. Proteasome inhibition by the natural products epoxomicin and dihydroeponemycin: insights into specificity and potency. Bioorg Med Chem Lett 1999;9: 333540.
  • 32
    Sin N, Kim KB, Elofsson M, Meng L, Auth H, Kwok BH, Crews CM. Total synthesis of the potent proteasome inhibitor epoxomicin: a useful tool for understanding proteasome biology. Bioorg Med Chem Lett 1999;9: 22838.
  • 33
    Umezawa H. Structures and activities of protease inhibitors of microbial origin. Methods Enzymol 1976;45: 67895.
  • 34
    Thornberry NA. Interleukin-1beta converting enzyme. Methods Enzymol 1994;244: 61531.
  • 35
    Kozlowski S, Corr M, Shirai M, Boyd LF, Pendleton CD, Berzofsky JA, Margulies DH. Multiple pathways are involved in the extracellular processing of MHC class I–restricted peptides. J Immunol 1993;151: 403344.
  • 36
    Umezawa H. Low-molecular-weight enzyme inhibitors of microbial origin. Annu Rev Microbiol 1982;36: 7599.
  • 37
    Lopez D, Gil-Torregrosa BC, Bergmann C, Del Val M. 2000. Sequential cleavage by metallopeptidases and proteasomes is involved in processing HIV-1 ENV epitope for endogenous MHC class I antigen presentation. J Immunol 2000;164: 50707.
  • 38
    Antón LC, Snyder HL, Bennink JR, Vinitsky A, Orlowski M, Porgador A, Yewdell JW. Dissociation of proteasomal degradation of biosynthesized viral proteins from generation of MHC class I–associated antigenic peptides. J Immunol 1998; 160: 485968.
  • 39
    Geier E, Pfeifer G, Wilm M, Lucchiari-Hartz M, Baumeister W, Eichmann K, Niedermann G. A giant protease with potential to substitute for some functions of the proteasome. Science 1999;283: 97881.
  • 40
    Lautscham G, Mayrhofer S, Taylor G, Haigh T, Leese A, Rickinson A, Blake N. Processing of a multiple membrane spanning Epstein-Barr virus protein for CD8+ T cell recognition reveals a proteasome-dependent, transporter associated with antigen processing-independent pathway. J Exp Med 2001;194: 105368.
  • 41
    Schmidtke G, Eggers M, Ruppert T, Groettrup M, Koszinowski UH, Kloetzel P-M. Inactivation of a defined active site in the mouse 20S proteasome complex enhances major histocompatibility complex class I antigen presentation of a murine cytomegalovirus protein. J Exp Med 1998;187: 16416.
  • 42
    Morel S, Lévy F, Burlet-Schiltz O, Brasseur F, Probst-Kepper M, Peitrequin A-L, Monsarrat B, Van Velthoven R, Cerottini J-C, Boon T, Gairin JE, Van den Eynde BJ. Processing of some antigens by the standard proteasome but not immunoproteasome results in poor presentation by dendritic cells. Immunity 2000; 12: 10717.
  • 43
    Chen W, Norbury CC, Cho Y, Yewdell JW, Bennink JR. Immunoproteasomes shape immunodominance hierarchies of antiviral CD8+ T cells at the levels of T cell repertoire and presentation of viral antigens. J Exp Med 2001;193: 131926.
  • 44
    Whitby FG, Masters EI, Kramer L, Knowlton JR, Yao Y, Wang CC, Hill CP. Structural basis for the activation of 20S proteasomes by 11S regulators. Nature 2000;408: 11520.
  • 45
    Köhler A, Cascio P, Leggett DS, Woo KM, Goldberg AL, Finley D. The axial channel of the proteasome core particle is gated by the Rpt2 ATPase and controls both substrate entry and product release. Mol Cell 2001;7: 114352.
  • 46
    Hill AB, Lee SP, Haurum JS, Murray N, Yao Q-Y, Rowe M, Signoret N, Rickinson AB, McMichael AJ. 1995. Class I major histocompatibility complex–restricted cytotoxic T lymphocytes specific for Epstein-Barr virus (EBV)–transformed B lymphoblastoid cell lines against which they were raised. J Exp Med 1995;181: 22218.
  • 47
    Reali E, Guerrini R, Giori B, Borghi M, Marastoni M, Tomatis R, Traniello S, Masucci MG, Gavioli R. Activation of epitope-specific memory cytotoxic T lymphocyte responses by synthetic peptides. Clin Exp Immunol 1996;105: 36975.
  • 48
    Reali E, Guerrini R, Marastoni M, Tomatis R, Masucci MG, Traniello S, Gavioli R. A single specific amino acid residue in peptide antigens is sufficient to activate memory cytotoxic T lymphocytes: potential role of cross-reactive peptides in memory T cell maintenance. J Immunol 1999;162: 10613.
  • 49
    Rooney CM, Smith CA, Ng CY, Loftin SK, Sixbey JW, Gan Y, Srivastava DK, Bowman LC, Krance RA, Brenner MK, Heslop HE. Infusion of cytotoxic T cells for the prevention and treatment of Epstein-Barr virus–induced lymphoma in allogeneic transplant recipients. Blood 1998;92: 154955.
  • 50
    Gustafsson A, Levitsky V, Zou JZ, Frisan T, Dalianis T, Ljungman P, Ringden O, Winiarski J, Ernberg I, Masucci MG. 2000. Epstein-Barr virus (EBV) load in bone marrow transplant recipients at risk to develop posttransplant lymphoproliferative disease: prophylactic infusion of EBV-specific cytotoxic T cells. Blood 2000;95: 80714.
  • 51
    Levitskaya J, Coram M, Levitsky V, Imreh S, Steigerwald-Mullen PM, Klein G, Kurilla MG, Masucci MG. Inhibition of antigen processing by the internal repeat region of the Epstein-Barr virus nuclear antigen-1. Nature 1995;375: 6858.