SEARCH

SEARCH BY CITATION

REFERENCES

  • 1
    Jakoby WB. The glutathione S-transferases: a group of multifunctional detoxification proteins. Adv Enzymol Mol Biol 1978; 46: 383414.
  • 2
    Awasthi YC, Sharma R, Singhal SS. Human glutathione S-transferases. Int J Biochem 1994; 26: 295308.
  • 3
    Mannervik B, Danielson UH. Glutathione S-transferases structure and catalytic activity. CRC Crit Rev Biochem 1988; 23: 283337.
  • 4
    Hayes JD, Pulford DJ. The glutathione S-transferase supergene family: regulation of GST and the contribution of the isoenzymes to cancer chemoprotection and drug resistance. Crit Rev Biochem Mol Biol 1995; 30: 445600.
  • 5
    Uchida K. Cellular response to bioactive lipid peroxidation products. Free Radic Res 2000; 33: 7317.
  • 6
    Yamaguchi A, Urano T, Goi T, Feig LA. An Eps homology (EH) domain protein that binds to the Ral-GTPase target, RalBP1. J Biol Chem 1997; 272: 312304.
  • 7
    Ikeda M, Ishida O, Hinoi T, Kishida S, Kikuchi A. Identification and characterization of a novel protein interacting with Ral-binding protein 1, a putative effector protein of Ral. J Biol Chem 1998; 273: 81421.
  • 8
    Matsuzaki T, Hanai S, Kishi H, Liu Z, Bao Y, Kikuchi A, Tsuchida K, Sugino H. Regulation of endocytosis of activin type II receptors by a novel PDZ protein through Ral/Ral-binding protein 1-dependent pathway. J Biol Chem 2002; 277: 1900818.
  • 9
    Awasthi S, Cheng J, Singhal SS, Saini MK, Pandya U, Pikula S, Bandorowicz-Pikula J, Singh SV, Zimniak P, Awasthi YC. Novel function of human RLIP76: ATP-dependent transport of glutathione conjugates and doxorubicin. Biochemistry 2000; 39: 932734.
  • 10
    Sharma R, Singhal SS, Cheng J, Yang Y, Sharma A, Zimniak P, Awasthi S, Awasthi YC. RLIP76 is the major ATP-dependent transporter of glutathione-conjugates and doxorubicin in human erythrocytes. Arch Biochem Biophys 2001; 391: 1719.
  • 11
    Awasthi S, Sharma R, Singhal SS, Zimniak P, Awasthi YC. RLIP76, a novel transporter catalyzing ATP-dependent efflux of xenobiotics. Drug Metab Dispos 2002; 30: 130010.
  • 12
    Chardin P, Tavitian A. The ral gene: a new ras related gene isolated by the use of a synthetic probe. EMBO J 1986; 5: 22038.
  • 13
    Bielinski DF, Pyun HY, Linko-Stentz K, Macara IG, Fine RE. Ral and Rab3a are major GTP-binding proteins of axonal rapid transport and synaptic vesicles and do not redistribute following depolarization stimulated synaptosomal exocytosis. Biochim Biophys Acta 1993; 1151: 24656.
  • 14
    Volknandt W, Pevsner J, Elferink LA, Scheller RH. Association of three small GTP-binding proteins with cholinergic synaptic vesicles. FEBS Lett 1993; 317: 536.
  • 15
    Albright CF, Giddings BW, Liu J, Vito M, Weinberg RA. Characterization of a guanine nucleotide dissociation stimulator for a ras-related GTPase. EMBO J 1993; 12: 33947.
  • 16
    Kikuchi A, Demo SD, Ye ZH, Chen YW, Williams LT. RalGDS family members interact with the effector loop of ras p21. Mol Cell Biol 1994; 14: 748391.
  • 17
    Urano T, Emkey R, Feig LA. Ral-GTPases mediate a distinct downstream signaling pathway from Ras that facilitates cellular transformation. EMBO J 1996; 15: 8106.
  • 18
    Feig LA, Emkey R. Ral gene products and their regulation. In: LacalJCL, McCormickF, eds. The ras superfamily of GTPases. Boca Raton, FL: CRC Press, 1993. 24758.
  • 19
    White MA, Vale T, Camonis JH, Schaefer E, Wigler MH. A role for the Ral guanine nucleotide dissociation stimulator in mediating Ras-induced transformation. J Biol Chem 1996; 271: 1643942.
  • 20
    Okazari M, Kishida S, Hinoi T, Hasegawa T, Tamada M, Kataoka T, Kikuchi A. Synergistic activation of c-fos promoter activity by Raf and Ral GDP dissociation stimulator. Oncogene 1997; 14: 51521.
  • 21
    Henry DO, Moskalenko SA, Kaur KJ, Fu M, Pestell RG, Camonis JH, White MA. Ral GTPases contribute to regulation of cyclin D1 through activation of NF-κB. Mol Cell Biol 2000; 20: 808492.
  • 22
    Feig LA, Urano T, Cantor S. Evidence for a Ras/Ral signaling cascade. Trends Biochem Sci 1996; 21: 43841.
  • 23
    Hofer F, Berdeaux R, Martin GS. Ras-independent activation of Ral by a Ca2+ dependent pathway. Curr Biol 1998; 8: 83942.
  • 24
    Wang KL, Roufogalis BD. Ca2+/calmodulin stimulates GTP binding to the ras-related protein ral-A. J Biol Chem 1999; 274: 145258.
  • 25
    Jiang H, Luo JQ, Urano T, Frankel P, Lu Z, Foster DA, Feig LA. Involvement of Ral GTPase in v-Src-induced phospholipase D activation. Nature 1995; 378: 40912.
  • 26
    Steed PM, Chow AH. Intracellular signaling by phospholipase D as a therapeutic target. Curr Pharm Biotechnol 2001; 2: 24156.
  • 27
    Exton JH. New developments in phospholipase D. J Biol Chem 1997; 272: 1557982.
  • 28
    Aznar S, Lacal JC. Rho signals to cell growth and apoptosis. Cancer Lett 2001; 165: 110.
  • 29
    Evers EE, Zondag GC, Malliri A, Price LS, ten Klooster JP, van der Kammen RA, Collard JG. Rho family proteins in cell adhesion and cell migration. Eur J Cancer 2000; 36: 126974.
  • 30
    Schmitz AA, Govek EE, Bottner B, Van Aelst L. Rho GTPases: signaling, migration, and invasion. Exp Cell Res 2000; 26: 112.
  • 31
    Gnad R, Kaina B, Fritz G. Rho GTPases are involved in the regulation of NF-kappaB by genotoxic stress. Exp Cell Res 2001; 264: 2449.
  • 32
    Gildea JJ, Harding MA, Seraj MJ, Gulding KM, Theodorescu D. The role of Ral A in epidermal growth factor receptor-regulated cell motility. Cancer Res 2002; 62: 9825.
  • 33
    Jaffe AB, Hall A. Rho GTPases in transformation and metastasis. Adv Cancer Res 2002; 84: 5780.
  • 34
    Ridley AJ. Rho-related proteins: actin cytoskeleton and cell cycle. Curr Opin Genet Dev 1995; 5: 2430.
  • 35
    Kong AN, Owuor E, Yu R, Hebbar V, Chen C, Hu R, Mandlekar S. Induction of xenobiotic enzymes by the MAP kinase pathway and the antioxidant or electrophile response element (ARE/EpRE). Drug Metab Rev 2001; 33: 25571.
  • 36
    Pearce AK, Humphrey TC. Integrating stress-response and cell-cycle checkpoint pathways. Trends Cell Biol 2001; 11: 42633.
  • 37
    Park SH, Weinberg RA. A putative effector of Ral has homology to Rho/Rac GTPase activating proteins. Oncogene 1995; 11: 234955.
  • 38
    Cantor SB, Urano T, Feig LA. Identification and characterization of Ral-binding protein 1, a potential downstream target of Ral GTPases. Mol Cell Biol 1995; 15: 457884.
  • 39
    Jullien-Flores V, Dorseuil O, Romero F, Letourneur F, Saragosti S, Berger R, Tavitian A, Gacon G, Camonis JH. Bridging Ral GTPase to Rho pathways. RLIP76, a Ral effector with CDC42/Rac GTPase-activating protein activity. J Biol Chem 1995; 270: 224737.
  • 40
    Bauer B, Mirey G, Vetter IR, Garcia-Ranea JA, Valencia A, Wittinghofer A, Camonis JH, Cool RH. Effector recognition by the small GTP-binding proteins Ras and Ral. J Biol Chem 1999; 274: 1776370.
  • 41
    Diekmann D, Brill S, Garrett MD, Totty N, Hsuan J, Monfries C, Hall C, Lim L, Hall A. Bcr encodes a GTPase-activating protein for p21Rac. Nature 1991; 351: 4002.
  • 42
    Hinoi T, Kishida S, Koyama S, Ikeda M, Matsuura Y, Kikuchi A. Post-translational modifications of Ras and Ral are important for the action of Ral GDP dissociation stimulator. J Biol Chem 1996; 271: 197106.
  • 43
    Xu J, Zhou Z, Zeng L, Haung Y, Zhao W, Cheng C, Xu M, Xie Y, Mao Y. Cloning, expression and characterization of a novel human REPS1 gene. Biochim Biophys Acta 2001; 1522: 11821.
  • 44
    Benmerah A, Gagnon J, Begue B, Megarbane B, Dautry-Varsat A, Cerf-Bensussan N. The tyrosine kinase substrate eps15 is constitutively associated with the plasma membrane adaptor AP-2. J Cell Biol 1995; 131: 18318.
  • 45
    Morinaka K, Koyama S, Nakashima S, Hinoi T, Okawa K, Iwamatsu A, Kikuchi A. Epsin binds to the EH domain of POB1 and regulates receptor-mediated endocytosis. Oncogene 1999; 18: 591522.
  • 46
    Di Fiore PP, Pelicci PG, Sorkin A. EH: a novel protein–protein interaction domain potentially involved in intracellular sorting. Trends Biochem Sci 1997; 22: 4113.
  • 47
    Goi T, Shipitsin M, Lu Z, Foster DA, Klinz SG, Feig LA. An EGF receptor/Ral-GTPase signaling cascade regulates c-Src activity and substrate specificity. EMBO J 2000; 19: 62330.
  • 48
    Smithgall TE. SH2 and SH3 domains: potential targets for anti-cancer drug design. J Pharmacol Toxicol Methods 1995; 34: 12532.
  • 49
    Koshiba S, Kigawa T, Iwahara J, Kikuchi A, Yokoyama S. Solution structure of the Eps15 homology domain of a human POB1 (partner of RalBP1). FEBS Lett 1999; 442: 13842.
  • 50
    Paul EC, Quaroni A. Identification of a 102 kDa protein (cytocentrin) immunologically related to keratin 19, which is a cytoplasmically derived component of the mitotic spindle pole. J Cell Sci 1993; 106: 96781.
  • 51
    Quaroni A, Paul EC. Cytocentrin is a Ral-binding protein involved in the assembly and function of the mitotic apparatus. J Cell Sci 1999; 112: 70718.
  • 52
    Rechsteiner M. PEST sequences are signals for rapid intracellular proteolysis. Semin Cell Biol 1990; 1: 43340.
  • 53
    Awasthi YC, Misra G, Rassin DK, Srivastava SK. Detoxification of xenobiotics of glutathione S-transferases in erythrocytes: the transport of the conjugate of glutathione and 1-chloro-2,4-dinitrobenzene. Br J Haematol 1983; 55: 41925.
  • 54
    LaBelle EF, Singh SV, Srivastava SK, Awasthi YC. Dinitrophenyl glutathione efflux from human erythrocytes is primary active ATP-dependent transport. Biochem J 1986; 238: 4439.
  • 55
    Sharma R, Gupta S, Singh SV, Medh RD, Ahmad H, LaBelle EF, Awasthi YC. Purification and characterization of dinitrophenylglutathione ATPase of human erythrocytes and its expression in other tissues. Biochem Biophys Res Commun 1990; 171: 15561.
  • 56
    Awasthi S, Singhal SS, Srivastava SK, Zimniak P, Bajpai KK, Saxena M, Sharma R, Ziller SA 3rd, Frenkel EP, Singh SV, He NG, Awasthi YC. Adenosine triphosphate-dependent transport of doxorubicin, daunomycin, and vinblastine in human tissues by a mechanism distinct from the P-glycoprotein. J Clin Invest 1994; 93: 95865.
  • 57
    Awasthi S, Singhal SS, Srivastava SK, Torman RT, Zimniak P, Bandorowicz-Pikula J, Singh SV, Piper JT, Awasthi YC, Pikula S. ATP-dependent human erythrocyte glutathione-conjugate transporter. I. Purification, photoaffinity labeling, and kinetic characteristics of ATPase activity. Biochemistry 1998; 37: 52318.
  • 58
    Awasthi S, Singhal SS, Pikula S, Piper JT, Srivastava SK, Torman RT, Bandorowicz-Pikula J, Lin JT, Singh SV, Zimniak P, Awasthi YC. ATP-dependent human erythrocyte glutathione-conjugate transporter. II. Functional reconstitution of transport activity. Biochemistry 1998; 37: 523948.
  • 59
    Awasthi S, Singhal SS, Pandya U, Gopal S, Zimniak P, Singh SV, Awasthi YC. ATP-dependent colchicine transport by human erythrocyte glutathione conjugate transporter. Toxicol Appl Pharmacol 1999; 155: 21526.
  • 60
    LaBelle EF, Singh SV, Ahmad H, Wronski L, Srivastava SK, Awasthi YC. A novel dinitrophenylglutathione-stimulated ATPase is present in human erythrocyte membranes. FEBS Lett 1988; 228: 536.
  • 61
    Saxena M, Singhal SS, Awasthi S, Singh SV, Labelle EF, Zimniak P, Awasthi YC. Dinitrophenyl S-glutathione ATPase purified from human muscle catalyzes ATP hydrolysis in the presence of leukotrienes. Arch Biochem Biophys 1992; 298: 2317.
  • 62
    Singhal SS, Sharma R, Gupta S, Ahmad H, Zimniak P, Radominska A, Lester R, Awasthi YC. The anionic conjugates of bilirubin and bile acids stimulate ATP hydrolysis by S-(dinitrophenyl) glutathione ATPase of human erythrocyte. FEBS Lett 1991; 281: 2557.
  • 63
    Awasthi YC, Singhal SS, Gupta S, Ahmad H, Zimniak P, Radominska A, Lester R, Sharma R. Purification and characterization of an ATPase from human liver which catalyzes ATP hydrolysis in presence of the conjugates of bilirubin, bile acids and glutathione. Biochem Biophys Res Commun 1991; 175: 10906.
  • 64
    Leslie EM, Deeley RG, Cole SPC. Toxicological relevance of the multidrug resistance protein 1, MRP1 (ABCC1) and related transporters. Toxicology 2001; 167: 323.
  • 65
    Loe DW, Almquist KC, Deeley RG, Cole SP. Multidrug resistance protein (MRP)–mediated transport of leukotriene C4 and chemotherapeutic agents in membrane vesicles. Demonstration of glutathione-dependent vincristine transport. J Biol Chem 1996; 271: 967582.
  • 66
    Heaney D, Derghazarian CB, Pineo GF, Ali MA. Massive colchicine overdose: a report on the toxicity. Am J Med Sci 1976; 271: 2338.
  • 67
    Stanley MW, Taurog JD, Snover DC. Fatal colchicine toxicity: report of a case. Clin Exp Rheumatol 1984; 3: 16771.
  • 68
    Finklestein M, Goldman L, Grace ND, Foley M, Randall N. Granulocytopenia complicating colchicine therapy for primary biliary cirrhosis. Gastroenterology 1987; 93: 12315.
  • 69
    Zimniak P, Ziller SA 3rd, Panfil I, Radominska A, Wolters H, Kuipers F, Sharma R, Saxena M, Moslen MT, Vore M, Awasthi YC. Identification of an anion-transport ATPase that catalyzes glutathione conjugate-dependent ATP hydrolysis in canalicular plasma membranes from normal rats and rats with conjugated hyperbilirubinemia (GY mutant). Arch Biochem Biophys 1992; 292: 5348.
  • 70
    Pikula S, Hayden JB, Awasthi S, Awasthi YC, Zimniak P. Organic anion-transporting ATPase of rat liver. I. Purification, photoaffinity labeling, and regulation by phosphorylation. J Biol Chem 1994; 269: 2756673.
  • 71
    Pikula S, Hayden JB, Awasthi S, Awasthi YC, Zimniak P. Organic anion-transporting ATPase of rat liver. II. Functional reconstitution of active transport and regulation by phosphorylation. J Biol Chem 1994; 269: 275749.
  • 72
    Paulusma CC, Bosma PJ, Zaman GJ, Bakker CT, Otter M, Scheffer GL, Scheper RJ, Borst P, Oude Elferink RP. Congenital jaundice in rats with a mutation in a multidrug resistance–associated protein gene. Science 1996; 271: 11268.
  • 73
    Takenaka O, Horie T, Kobayashi K, Suzuki H, Sugiyama Y. Kinetic analysis of hepatobiliary transport for conjugated metabolites in the perfused liver of mutant rats (EHBR) with hereditary conjugated hyperbilirubinemia. Pharm Res 1995; 12: 174655.
  • 74
    Singhal SS, Singhal J, Cheng J, Pikula S, Sharma R, Zimniak P, Awasthi YC, Awasthi S. Purification and functional reconstitution of intact ral-binding GTPase activating protein, RLIP76, in artificial liposomes. Acta Biochim Pol 2001; 48: 55162.
  • 75
    Awasthi S, Cheng JZ, Singhal SS, Pandya U, Sharma R, Singh SV, Zimniak P, Awasthi YC. Functional reassembly of ATP-dependent xenobiotic transport by the N- and C-terminal domains of RLIP76 and identification of ATP binding sequences. Biochemistry 2001; 40: 415968.
  • 76
    Saraste M, Sibbald PR, Wittinghofer A. The P-loop—a common motif in ATP- and GTP-binding proteins. Trends Biochem Sci 1990; 15: 4304.
  • 77
    Paumi CM, Ledford BG, Smitherman PK, Townsend AJ, Morrow CS. Role of multidrug resistance protein 1 (MRP1) and glutathione S-transferase A1-1 in alkylating agent resistance. Kinetics of glutathione conjugate formation and efflux govern differential cellular sensitivity to chlorambucil versus melphalan toxicity. J Biol Chem 2001; 276: 79526.
  • 78
    Awasthi S, Singhal SS, He NG, Chaubey M, Zimniak P, Srivastava SK, Singh SV, Awasthi YC. Modulation of doxorubicin cytotoxicity by ethacrynic acid. Int J Cancer 1996; 68: 3339.
  • 79
    Singhal SS, Singhal J, Sharma R, Singh SV, Zimniak P, Awasthi YC, Awasthi S. Role of RLIP76 in lung cancer doxorubicin resistance I. The ATPase activity of RLIP76 correlates with doxorubicin and 4-hydroxynonenal resistance in lung cancer cells. Int J Oncol 2003; 22: 36575.
  • 80
    Awasthi S, Singhal SS, Singhal J, Cheng J, Zimniak P, Awasthi YC. Role of RLIP76 in lung cancer doxorubicin resistance II. Doxorubicin transport in lung cancer by RLIP76. Int J Oncol 2003; 22: 71320.
  • 81
    Awasthi S, Singhal SS, Singhal J, Yang Y, Zimniak P, Awasthi YC. 2003. Role of RLIP76 in lung cancer doxorubicin resistance III. Anti-RLIP76 antibodies trigger apoptosis in lung cancer cells and synergistically increase doxorubicin cytotoxicity. Int J Oncol 2003; 22: 72132.
  • 82
    Cheng JZ, Sharma R, Yang Y, Singhal SS, Sharma A, Saini MK, Singh SV, Zimniak P, Awasthi S, Awasthi YC. Accelerated metabolism and exclusion of 4-hydroxynonenal through induction of RLIP76 and hGST5.8 is an early adaptive response of cells to heat and oxidative stress. J Biol Chem 2001; 276: 4121323.
  • 83
    Cheng JZ, Singhal SS, Saini M, Singhal J, Piper JT, Van Kuijk FJ, Zimniak P, Awasthi YC, Awasthi S. Effects of mGST A4 transfection on 4-hydroxynonenal-mediated apoptosis and differentiation of K562 human erythroleukemia cells. Arch Biochem Biophys 1999; 372: 2936.
  • 84
    Cheng JZ, Singhal SS, Sharma A, Saini M, Yang Y, Awasthi S, Zimniak P, Awasthi YC. Transfection of mGSTA4 in HL-60 cells protects against 4-hydroxynonenal-induced apoptosis by inhibiting JNK-mediated signaling. Arch Biochem Biophys 2001; 392: 197207.
  • 85
    Uchida K, Shiraishi M, Naito Y, Torii Y, Nakamura Y, Osawa T. Activation of stress signaling pathways by the end product of lipid peroxidation. 4-Hydroxy-2-nonenal is a potential inducer of intracellular peroxide production. J Biol Chem 1999; 274: 223442.
  • 86
    Hihi AK, Michalik L, Wahli W. PPARs: transcriptional effectors of fatty acids and their derivatives. Cell Mol Life Sci 2002; 59: 7908.
  • 87
    Singhal SS, Saxena M, Ahmad H, Awasthi S, Haque AK, Awasthi YC. Glutathione S-transferases of human lung: characterization and evaluation of the protective role of the alpha class isozymes against lipid peroxidation. Arch Biochem Biophys 1992; 299: 23241.
  • 88
    Kokatnur VR, Jelling M. Iodometric determination of peroxygen in organic compounds. J Am Chem Soc 1941; 63: 14323.
  • 89
    Ohkawa H, Ohishi N, Yagi K. Assay for lipid peroxides in animal tissues by thiobarbituric acid reaction. Anal Biochem 1979; 95: 3518.