• 1
    Campanacci M. Bone and soft tissue tumors, 2nd ed. Vienna: Springer-Verlag, 1999.
  • 2
    Delattre O, Zucman J, Melot T, Garau XS, Zucker JM, Lenoir GM, Ambros PF, Sheer D, Turc-Carel C, Triche TJ, Aurias A, Thomas G. The Ewing family of tumors: a subgroup of small-round-cell tumors defined by specific chimeric transcripts. N Engl J Med 1994; 331: 2949.
  • 3
    Bacci G, Picci P, Ferrari S, Mercuri M, Brach del Prever A, Rosito P, Barbieri E, Tienghi A, Forni C. Neoadjuvant chemotherapy for Ewing's sarcoma of bone: no benefit observed after adding iphosphamide and etoposide to vincristine, actinomycin, cyclophosphamide, and doxorubicin in the maintenance phase—results of two sequential studies. Cancer 1998; 6: 117483.
  • 4
    Craft A, Cotterill S, Malcolm A, Spooner D, Grimer R, Souhami R, Imeson J, Lewis I. Ifosfamide-containing chemotherapy in Ewing's sarcoma: the Second United Kingdom Children's Cancer Study Group and the Medical Research Council Ewing's Tumor Study. J Clin Oncol 1998; 16: 362833.
  • 5
    Paulussen M, Ahrens S, Craft AW, Dunst J, Frohlich B, Jabar S, Rube C, Winkelmann W, Wissing S, Zoubek A, Jurgens H. Ewing's tumors with primary lung metastases: survival analysis of 114 (European Intergroup) Cooperative Ewing's Sarcoma Studies patients. J Clin Oncol 1998; 16: 304452.
  • 6
    Kovar H, Aryee D, Zoubek A. The Ewing family of tumors and the search for the Achilles' heel. Curr Opin Oncol 1999; 11: 27584.
  • 7
    Girnita L, Girnita A, Wang M, Meis-Kindblom JM, Kindblom LG, Larsson O. A link berween basic fibroblast growth factor (bFGF) and EWS/FLI-1 in Ewing's sarcoma cells. Oncogene 2000; 19: 4298301.
  • 8
    Lawlor ER, Lim JF, Tao W, Poremba C, Chow CJ, Kalousek IV, Kovar H, MacDonald TJ, Sorensen PHB. The Ewing tumor family of peripheral primitive neuroectodermal tumors expresses human gastrin-releasing peptide. Cancer Res 1998; 58: 246976.
  • 9
    Scotlandi K, Benini S, Sarti M, Serra M, Lollini PL, Maurici D, Picci P, Manara MC, Baldini N. Insulin-like growth factor I receptor-mediated circuit in Ewing's sarcoma/peripheral neuroectodermal tumor: a possible therapeutic target. Cancer Res 1996; 56: 45704.
  • 10
    Yee D, Favoni RE, Lebovic GS, Lombana F, Powell DR, Reynolds CP, Rosen N. Insulin-like growth factor I expression by tumors of neuroectodermal origin with the t(11;22) chromosomal translocation: a potential autocrine growth factor. J Clin Invest 1990; 86: 180614.
  • 11
    de Alava E, Panizo A, Antonescu CR, Huvos AG, Pardo-Mindan FJ, Barr FG, Ladanyi M. Association of EWS-FLI1 type 1 fusion with lower proliferative rate in Ewing's sarcoma. Am J Pathol 2000; 156: 84955.
  • 12
    Toretzky JA, Kalebic T, Blakesley V, Le Roith D, Helman LJ. The insulin-like growth factor-I receptor is required for EWS/FLI-1 transformation of fibroblasts. J Biol Chem 1997; 272: 308227.
  • 13
    Scotlandi K, Benini S, Nanni P, Lollini PL, Nicoletti G, Landuzzi L, Serra M, Manara MC, Picci P, Baldini N. Blockage of insulin-like growth factor-I receptor inhibits the growth of Ewing's sarcoma in athymic mice. Cancer Res 1998; 58: 412731.
  • 14
    Benini S, Manara MC, Baldini N, Cerisano V, Serra M, Mercuri M, Lollini PL, Nanni P, Picci P, Scotlandi K. Inhibition of insulin-like growth factor I receptor increases the antitumor activity of doxorubicin and vincristine against Ewing's sarcoma cells. Clin Cancer Res 2001; 7: 17907.
  • 15
    Scotlandi K, Maini C, Manara MC, Benini S, Serra M, Cerisano V, Strammiello R, Baldini N, Lollini PL, Nanni P, Nicoletti G, Picci P. Effectiveness of insulin-like growth factor receptor I antisense strategy against Ewing's sarcoma cells. Cancer Gene Ther 2002; 9: 296307.
  • 16
    Scotlandi K, Avnet S, Benini S, Manara MC, Serra M, Cerisano V, Perdichizzi S, Lollini PL, De Giovanni C, Landuzzi L, Picci P. Expression of an IGF-I receptor dominant negative mutant induces apoptosis, inhibits tumorigenesis and enhances chemosensitivity in Ewing's sarcoma cells. Int J Cancer 2002; 101: 1116.
  • 17
    Andrews DW, Resnicoff M, Flanders AE, Kenyon L, Curtis M, Merli G, Baserga R, Iliakis G, Aiken RD. Results of a pilot study involving the use of an antisense oligodeoxynucleotide directed against the insulin-like growth factor type I receptor in malignant astrocytomas. J Clin Oncol 2001; 19: 2189200.
  • 18
    LeRoith D. Insulin-like growth factor I receptor signaling: overlapping or redundant pathways? Endocrinology 2000; 141: 12878.
  • 19
    Li W, Jiang YX, Zhang J, Soon L, Flechner L, Kapoor V, Pierce JH, Wang LH. Protein kinase C-delta is an important signaling molecule in insulin-like growth factor I receptor-mediated cell transformation. Mol Cell Biol 1998; 18: 588898.
  • 20
    Peruzzi F, Prisco M, Dews M, Salomoni P, Grassilli E, Romano G, Calabretta B, Baserga R. Multiple signaling pathways at the Insulin-like growth factor I receptor in protection from apoptosis. Mol Cell Biol 1999; 19: 720315.
  • 21
    Chen J, Sadowski HB, Kohanski A, Wang LH. Stat5 is a physiological substrate of the insulin receptor. Proc Natl Acad Sci USA 1997; 94: 2295300.
  • 22
    Zong CS, Chan J, Levy DE, Horvath C, Sadowski HB, Wang LH. Mechanism of STAT3 activation by Insulin-like growth factor I receptor. J Biol Chem 2000; 275: 15099105.
  • 23
    Prisco M, Peruzzi F, Belletti B, Baserga R. Regulation of Id gene expression by type 1 insulin-like growth factor: roles of STAT3 and the Tyrosine 950 residue of the receptor. Mol Cell Biol 2001; 21: 544758.
  • 24
    Parrizas M, Saltiel AR, LeRoith D. Insulin-like growth factor I inhibits apoptosis using the PI 3-K and MAP-K pathways. J Biol Chem 1997; 272: 15461.
  • 25
    Baserga R. The contradictions of the insulin-like growth factor I receptor. Oncogene 2000; 19: 557481.
  • 26
    Romano G, Prisco M, Zanocco-Marani T, Peruzzi F, Valentinis B, Baserga R. Dissociation between resistance to apoptosis and the transformed phenotype in IGF-I receptor signaling. J Cell Biochem 1999; 72: 294310.
  • 27
    Hermanto U, Zong CS, Wang LH. Inhibition of mitogen-activated protein kinase kinase selectively inhibits cell proliferation in human breast cancer cells displaying enhanced insulin-like growth factor I-mediated mitogen-activated protein kinase activation. Cell Growth Differ 2000; 11: 65564.
  • 28
    Nguyen KT, Wang WJ, Chan JL, Wang LH. Differential requirements of the MAP kinase and PI3 kinase signaling pathways in Src- versus insulin and IGF-I receptors-induced growth and trasnformation of rat intestinal epithelial cells. Oncogene 2000; 19: 538597.
  • 29
    Cheng HL, Steinway ML, Russel JW, Feldman EL. GTPases and phosphatidylinositol 3-kinase are critical for insulin-like growth factor-I-mediated schwann cell motility. J Biol Chem 2000; 275: 27197204.
  • 30
    Dunn SE, Torres JV, Oh JS, Cykert DM, Barrett JC. Up-regulation of urokinase-type plasminogen activator by insulin-like growth factor-I depends upon phosphatidylinositol-3 kinase and mitogen-activated protein kinase kinase. Cancer Res 2001; 61: 136774.
  • 31
    Belletti B, Prisco M, Morrione A, Valentinis B, Navarro M, Baserga R. Regulation of Id2 gene expression by the insulin-like growth factor I receptor requires signaling by phosphatidylinositol 3-kinase. J Biol Chem 2001; 276: 1386774.
  • 32
    Heron-Milhavet L, Karas M, Goldsmith CM, Baum BJ, LeRoith D. Insulin-like growth factor-I (IGF-I) receptor activation rescues UV-damaged cells through a p38 signaling pathway: potential role of the IGF-I receptor in DNA repair. J Biol Chem 2001; 276: 1818592.
  • 33
    Alessi DR, Cuenda A, Cohen P, Dudley DT, Saltiel AR. PD-98059 is a specific inhibitor of the activation of mitogen-activated protein kinase in vitro and in vivo. J Biol Chem 1995; 270: 2748994.
  • 34
    Favata MF, Horiuchi KY, Manos EJ, Daulerio AJ, Stradley DA, Feeser WS, Van Dyk DE, Pitts WJ, Earl RA, Hobbs F, Copeland RA, Magolda RL, et al. Identification of a novel inhibitor of mitogen-activated protein kinase kinase. J Biol Chem 1998; 273: 1862332.
  • 35
    Vlahos CJ, Matter WF, Hui KY, Brown RF. A specific inhibitor of phosphatidylinositol 3-kinase, 2-(4-morpholinyl)-8-phenyl-4H-1-benzopyran-4-one (LY294002). J Biol Chem 1994; 269: 52418.
  • 36
    Manara MC, Perbal B, Benini S, Strammiello R, Cerisano V, Perdichizzi R, Serra M, Astolfi A, Bertoni F, Alami J, Yeger H, Picci P, Scotlandi K. The expression of ccn3(nov) gene in musculoskeletal tumors. Am J Pathol 2002; 160: 84959.
  • 37
    Toretsky JA, Thakar M, Eskenazi AE, Frantz CN. Phosphoinositide 3-hydroxide kinase blockade enhances apoptosis in the Ewing's sarcoma family of tumors. Cancer Res 1999; 59: 574550.
  • 38
    Silvany RE, Eliazer S, Wolff NC, Ilaria RL Jr. Interference with the constitutive activation of Erk1 and Erk2 impairs EWS/FLI-1-dependent transformation. Oncogene 2000; 19: 452330.
  • 39
    Lawlor ER, Sheel C, Irving J, Sorensen PHB. Ancorage-independent multi-cellular spheroids as an in vitro model of growth signaling in Ewing tumors. Oncogene 2002; 21: 30718.
  • 40
    Aaronson TA, Todaro GJ. Basis for the acquisition of malignant potential by mouse cells cultivated in vitro. Science 1968; 162: 10246.
  • 41
    Cuenda A, Rouse J, Doza YN, Meier R, Cohen P, Gallagher TF, Young PR, Lee JC. SB 203580 is a specific inhibitor of a MAP kinase homologue which is stimulated by cellular stresses and interleukin-1. FEBS Lett 1995; 364: 22933.
  • 42
    Heron-Milhavet L, LeRoith D. Insulin-like growth factor I induces MDM2-dependent degradation of p53 via the p38 MAPK pathway in response to DNA damage. J Biol Chem 2002; 277: 156006.
  • 43
    Sebolt-Leopold JS. Development of anticancer drugs targeting the MAP kinase pathway. Oncogene 2000; 19: 65949.
  • 44
    Ballif BA, Blenis J. Molecular mechanisms mediating mammalian mitogen-activated protein kinase (MAPK) kinase (MEK)-MAPK cell survival signals. Cell Growth Differ 2001; 12: 397408.
  • 45
    Vivanco I, Sawyers CL. The phosphatidylinositol 3-kinase-AKT pathway in human cancer. Nat Rev Cancer 2002; 2: 489501.
  • 46
    Staal A, Geertsma-Kleinekoort WM, Van Den Bemd GJ, Buurman CJ, Birkenhager JC, Pols HA, Van Leeuwen JP. Regulation of osteocalcin production and bone resorption by 1,25-dihydroxyvitamin D3 in mouse long bones: interaction with the bone-derived growth factors TGF-beta and IGF-I. J Bone Miner Res 1998; 13: 3643.
  • 47
    Scrimgeour AG, Blakesley VA, Stannard BS, LeRoith D. Mitogen-activated protein kinase and phosphatydilinositol 3-kinase pathways are not sufficient for insulin-like growth factor I-induced mitogenesis and tumorigenesis. Endocrinology 1997; 138: 25528.
  • 48
    Baserga R, Hongo A, Rubini M, Prisco M, Valentinis B. The IGF-I receptor in cell growth, transformation and apoptosis. Bioch Biophys Acta 1997; 1332: F10526.